IDEAS home Printed from https://ideas.repec.org/p/pot/statdp/58.html
   My bibliography  Save this paper

Empirische Analyse des Zusammenhangs zwischen Rendite und impliziter Volatilität am deutschen Aktienmarkt

Author

Listed:
  • Annika Mauer
  • Andreas Nastansky

    (Hochschule für Wirtschaft und Recht (HWR) Berlin)

Abstract

In diesem Beitrag wird empirisch untersucht, ob die zeitliche Entwicklung der Renditen des Deutschen Aktienindex (DAX) und die Zuwächse des Volatilitätsindex VDAX-NEW wechselseitig erklärt und vorhergesagt werden können. Der VDAX-NEW bildet dabei die von den Markteilnehmern erwartete Volatilität des Deutschen Aktienindex DAX ab. Die Ergebnisse zeigen, dass der im nationalen wie internationalen Kontext vielfach dokumentierte asymmetrische negative Zusammenhang zwischen den Renditen bzw. Änderungen der impliziten Volatilitätsindizes und den dazu korrespondierenden Aktienmarktindizes auch am deutschen Markt für den Zeitraum nach der globalen Finanzkrise nachgewiesen werden konnte, wobei der negative Zusammenhang im Falle negativer DAX-Renditen betragsmäßig stärker ausgeprägt ist als bei positiven DAX-Renditen. Hingegen verfügen die zeitverzögerten täglichen DAX-Renditen nur über einen geringen Mehrwert bei der Prognose des VDAX-NEW (und umgekehrt). Die empirischen Resultate sind robust hinsichtlich der Datenperiodizität und lassen sich mit Erkenntnissen aus der Kapitalmarkt- und Behavioral-Finance-Forschung erklären.

Suggested Citation

  • Annika Mauer & Andreas Nastansky, 2025. "Empirische Analyse des Zusammenhangs zwischen Rendite und impliziter Volatilität am deutschen Aktienmarkt," Statistische Diskussionsbeiträge 58, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
  • Handle: RePEc:pot:statdp:58
    DOI: 10.25932/publishup-66946
    as

    Download full text from publisher

    File URL: https://doi.org/10.25932/publishup-66946
    Download Restriction: no

    File URL: https://libkey.io/10.25932/publishup-66946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Lee, Bong Soo & Ryu, Doojin, 2013. "Stock returns and implied volatility: A new VAR approach," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-20.
    3. Cheekiat Low, 2004. "The Fear and Exuberance from Implied Volatility of S&P 100 Index Options," The Journal of Business, University of Chicago Press, vol. 77(3), pages 527-546, July.
    4. ., 2024. "Benchmarks Regulation," Chapters, in: EU Banking and Financial Regulation, chapter 35, pages 372-383, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasenjit Chakrabarti & K. Kiran Kumar, 2017. "Does behavioural theory explain return-implied volatility relationship? Evidence from India," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1355521-135, January.
    2. Emmanuel Anoruo & Vasudeva N. R. Murthy, 2017. "An examination of the REIT return–implied volatility relation: a frequency domain approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(3), pages 581-594, July.
    3. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    4. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    5. Huang, Teng-Ching & Lin, Bing-Huei & Yang, Tung-Hsiao, 2015. "Herd behavior and idiosyncratic volatility," Journal of Business Research, Elsevier, vol. 68(4), pages 763-770.
    6. Junmao Chiu & Huimin Chung & Keng-Yu Ho, 2014. "Fear Sentiment, Liquidity, and Trading Behavior: Evidence from the Index ETF Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-25.
    7. Doojin Ryu & Doowon Ryu & Heejin Yang, 2021. "The impact of net buying pressure on index options prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 27-45, January.
    8. Economou, Fotini & Panagopoulos, Yannis & Tsouma, Ekaterini, 2018. "Uncovering asymmetries in the relationship between fear and the stock market using a hidden co-integration approach," Research in International Business and Finance, Elsevier, vol. 44(C), pages 459-470.
    9. Ederington, Louis H. & Guan, Wei, 2010. "How asymmetric is U.S. stock market volatility?," Journal of Financial Markets, Elsevier, vol. 13(2), pages 225-248, May.
    10. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    11. Zhu, Huiming & Huang, Hui & Peng, Cheng & Yang, Yan, 2016. "Extreme dependence between crude oil and stock markets in Asia-Pacific regions: Evidence from quantile regression," Economics Discussion Papers 2016-46, Kiel Institute for the World Economy (IfW Kiel).
    12. Yanhui Chen & Kin Lai & Jiangze Du, 2014. "Modeling and forecasting Hang Seng index volatility with day-of-week effect, spillover effect based on ARIMA and HAR," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(2), pages 113-132, December.
    13. Baur, Dirk G. & Dimpfl, Thomas, 2018. "The asymmetric return-volatility relationship of commodity prices," Energy Economics, Elsevier, vol. 76(C), pages 378-387.
    14. Robert T. Daigler & Ann Marie Hibbert & Ivelina Pavlova, 2014. "Examining the Return–Volatility Relation for Foreign Exchange: Evidence from the Euro VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(1), pages 74-92, January.
    15. Song, Wonho & Ryu, Doojin & Webb, Robert I., 2016. "Overseas market shocks and VKOSPI dynamics: A Markov-switching approach," Finance Research Letters, Elsevier, vol. 16(C), pages 275-282.
    16. Kurt, Didem & Pauwels, Koen & Kurt, Ahmet C. & Srinivasan, Shuba, 2021. "The asymmetric effect of warranty payments on firm value: The moderating role of advertising, R&D, and industry concentration," International Journal of Research in Marketing, Elsevier, vol. 38(4), pages 817-837.
    17. Pati, Pratap Chandra & Rajib, Prabina & Barai, Parama, 2019. "The role of the volatility index in asset pricing: The case of the Indian stock market," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 336-346.
    18. Fassas, Athanasios P. & Papadamou, Stephanos, 2018. "Variance risk premium and equity returns," Research in International Business and Finance, Elsevier, vol. 46(C), pages 462-470.
    19. Fousekis, Panos, 2020. "Sign and size asymmetry in the stock returns-implied volatility relationship," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    20. Han, Heejoon & Kutan, Ali M. & Ryu, Doojin, 2015. "Modeling and predicting the market volatility index: The case of VKOSPI," Economics Discussion Papers 2015-7, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    implizite Volatilität; Leverage-Effekt; Rendite-Risiko; VDAX-NEW; Volatility-Feedback-Effekt;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pot:statdp:58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Winkler (email available below). General contact details of provider: https://edirc.repec.org/data/lspotde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.