IDEAS home Printed from https://ideas.repec.org/p/pen/papers/10-007.html
   My bibliography  Save this paper

Folk Theorems with Bounded Recall under (Almost) Perfect Monitoring, Third Version

Author

Listed:
  • George J. Mailath

    (Department of Economics, University of Pennsylvania)

  • Wojciech Olszewski

    (Department of Economics, Northwestern University)

Abstract

We prove the perfect-monitoring folk theorem continues to hold when attention is restricted to strategies with bounded recall and the equilibrium is essentially required to be strict. As a consequence, the perfect monitoring folk theorem is shown to be behaviorally robust under almost-perfect almost-public monitoring. That is, the same specification of behavior continues to be an equilibrium when the monitoring is perturbed from perfect to highly-correlated private.

Suggested Citation

  • George J. Mailath & Wojciech Olszewski, 2008. "Folk Theorems with Bounded Recall under (Almost) Perfect Monitoring, Third Version," PIER Working Paper Archive 10-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Mar 2010.
  • Handle: RePEc:pen:papers:10-007
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/working-papers/10-007.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    2. Doraszelski, Ulrich & Escobar, Juan F., 2012. "Restricted feedback in long term relationships," Journal of Economic Theory, Elsevier, vol. 147(1), pages 142-161.

    More about this item

    Keywords

    Repeated games; bounded recall strategies; folk theorem; imperfect monitoring;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:10-007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.