IDEAS home Printed from https://ideas.repec.org/p/pen/papers/04-002.html
   My bibliography  Save this paper

Some Results on the Solution of the Neoclassical Growth Model

Author

Listed:
  • Jesus Fernandez-Villaverde

    (Department of Economics, University of Pennsylvania)

  • Juan F. Rubio-Ramirez

    (Federal Reserve Bank of Atlanta)

Abstract

This paper presents some new results on the solution of the stochastic neoclassical growth model with leisure. We use the method of Judd (2003) to explore how to change variables in the computed policy functions that characterize the behavior of the economy. We find a simple close-form relation between the parameters of the linear and the loglinear solution of the model. We extend this approach to a general class of changes of variables and show how to find the optimal transformation. We report how in this way we reduce the average absolute Euler equation errors of the solution of the model by a factor of three. We also demonstrate how changes of variables correct for variations in the volatility of the economy even if we work with first order policy functions and how we can keep a linear representation of the laws of motion of the model if we use a nearly optimal transformation.

Suggested Citation

  • Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2003. "Some Results on the Solution of the Neoclassical Growth Model," PIER Working Paper Archive 04-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:04-002
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/working-papers/04-002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christiano, Lawrence J, 1990. "Linear-Quadratic Approximation and Value-Function Iteration: A Comparison," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 99-113, January.
    2. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    3. Benhabib, Jess & Schmitt-Grohe, Stephanie & Uribe, Martin, 2001. "The Perils of Taylor Rules," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 40-69, January.
    4. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    5. Ellen R. McGrattan & Edward C. Prescott, 2000. "Is the stock market overvalued?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 24(Fall), pages 20-40.
    6. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    7. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    8. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(1), pages 3-17.
    9. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    10. King, Robert G & Plosser, Charles I & Rebelo, Sergio T, 2002. "Production, Growth and Business Cycles: Technical Appendix," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 87-116, October.
    11. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    12. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    13. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    14. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    15. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    16. Jinill Kim & Sunghyun Kim & Ernst Schaumburg & Christopher A. Sims, 2003. "Calculating and Using Second Order Accurate Solutions of Discrete Time," Levine's Bibliography 666156000000000284, UCLA Department of Economics.
    17. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    18. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    19. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
    20. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Solving DSGE models with perturbation methods and a change of variables," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2509-2531, December.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    5. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," EconStor Preprints 269876, ZBW - Leibniz Information Centre for Economics.
    6. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," MPRA Paper 116480, University Library of Munich, Germany.
    7. Dorofeenko, Victor & Lee, Gabriel S. & Salyer, Kevin D., 2010. "A new algorithm for solving dynamic stochastic macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 388-403, March.
    8. Alfonso Novales & Javier J. PÈrez, 2004. "Is It Worth Refining Linear Approximations to Non-Linear Rational Expectations Models?," Computational Economics, Springer;Society for Computational Economics, vol. 23(4), pages 343-377, June.
    9. Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
    10. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    11. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    12. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    13. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    14. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    15. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    16. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    17. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    18. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    19. Dario Caldara & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez & Wen Yao, 2009. "Computing DSGE Models with Recursive Preferences," PIER Working Paper Archive 09-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    20. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.

    More about this item

    Keywords

    Dynamic Equilibrium Economies; Computational Methods; Changes of Variables; Linear and Nonlinear Solution Methods.;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:04-002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.