Application of machine learning to gas flaring
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/g6yvq
Download full text from publisher
References listed on IDEAS
- Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
- Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
- Christopher D. Elvidge & Mikhail Zhizhin & Kimberly Baugh & Feng-Chi Hsu & Tilottama Ghosh, 2015. "Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data," Energies, MDPI, vol. 9(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Louis Charlot, 2021. "Bayesian hierarchical analysis of a multifaceted program against extreme poverty," Papers 2109.06759, arXiv.org.
- Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
- Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
- Peter Tea & Tim B. Swartz, 2023. "The analysis of serve decisions in tennis using Bayesian hierarchical models," Annals of Operations Research, Springer, vol. 325(1), pages 633-648, June.
- Trung Dung Tran & Emmanuel Lesaffre & Geert Verbeke & Joke Duyck, 2021. "Latent Ornstein‐Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses," Biometrics, The International Biometric Society, vol. 77(2), pages 689-701, June.
- Rico Krueger & Taha H. Rashidi & Akshay Vij, 2020. "X vs. Y: an analysis of intergenerational differences in transport mode use among young adults," Transportation, Springer, vol. 47(5), pages 2203-2231, October.
- Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
- Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
- Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
- Steffen Jahn & Daniel Guhl & Ainslee Erhard, 2024. "Substitution Patterns and Price Response for Plant-Based Meat Alternatives," Rationality and Competition Discussion Paper Series 509, CRC TRR 190 Rationality and Competition.
- Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias von Davier, 2024. "Using Response Times for Joint Modeling of Careless Responding and Attentive Response Styles," Journal of Educational and Behavioral Statistics, , vol. 49(2), pages 173-206, April.
- Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
- Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020.
"Growth, development, and structural change at the firm-level: The example of the PR China,"
MPRA Paper
105011, University Library of Munich, Germany.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firmlevel: The example of the PR China," Chemnitz Economic Papers 040, Department of Economics, Chemnitz University of Technology.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2021. "Growth, development, and structural change at the firm level: The example of the PR China," Working Papers on East Asian Studies 128/2021, University of Duisburg-Essen, Institute of East Asian Studies IN-EAST.
- Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
- Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
- Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
- David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
- Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:thesis:g6yvq. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://thesiscommons.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.