Digital Pathways, Pandemic Trajectories. Using Google Trends to Track Social Responses to COVID-19
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/yndb7_v1
Download full text from publisher
References listed on IDEAS
- Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
- Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
- Qinneng Xu & Yulia R Gel & L Leticia Ramirez Ramirez & Kusha Nezafati & Qingpeng Zhang & Kwok-Leung Tsui, 2017. "Forecasting influenza in Hong Kong with Google search queries and statistical model fusion," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Beytía, Pablo & Infante, Carlos Cruz, 2020. "Digital Pathways, Pandemic Trajectories. Using Google Trends to Track Social Responses to COVID-19," SocArXiv yndb7, Center for Open Science.
- Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
- Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
- Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
- Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
- Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
- Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
- Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
- Corrado Lanera & Ileana Baldi & Andrea Francavilla & Elisa Barbieri & Lara Tramontan & Antonio Scamarcia & Luigi Cantarutti & Carlo Giaquinto & Dario Gregori, 2022. "A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster," IJERPH, MDPI, vol. 19(10), pages 1-13, May.
- Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022.
"Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany,"
Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2021. "The legitimacy of wind power in Germany," Working Paper Series in Production and Energy 54, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
- Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
- Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
- Li, Boyan & Diao, Xundi, 2023. "Structural break in different stock index markets in China," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
- Ibrar ul Hassan Akhtar, 2023. "Exploring Covid-19 Pandemic Initial 2020 Curve Based On Statistical Evaluation," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 7(1), pages 08-16, February.
- Szalkowski, Gabriel Andy & Mikalef, Patrick, 2023. "Understanding digital platform evolution using compartmental models," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Jaller, Miguel & Pineda, Leticia, 2017. "Warehousing and Distribution Center Facilities in Southern California: The Use of the Commodity Flow Survey Data to Identify Logistics Sprawl and Freight Generation Patterns," Institute of Transportation Studies, Working Paper Series qt5dz0j1gg, Institute of Transportation Studies, UC Davis.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:yndb7_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.