Identificación de tipologı́a de pobreza multidimensional a través del enfoque de cluster probabilı́stico (Identification of typology of multidimensional poverty through the probabilistic cluster approach)
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/nv962
Download full text from publisher
References listed on IDEAS
- Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Natalia Casado-Sanz & Begoña Guirao & Maria Attard, 2020. "Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Roads: The Driver’s Perspective," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
- Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
- Renuka Mahadevan & Vincent Hoang, 2016. "Is There a Link Between Poverty and Food Security?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(1), pages 179-199, August.
- Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
- Christophe Biernacki & Matthieu Marbac & Vincent Vandewalle, 2021. "Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 129-157, April.
- Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
- Marbac, Matthieu & Vandewalle, Vincent, 2019. "A tractable multi-partitions clustering," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 167-179.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:nv962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.