IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/hkc7y.html
   My bibliography  Save this paper

Estimating the population at-risk of homelessness in small areas

Author

Listed:
  • Batterham, Deb
  • Nygaard, Christian
  • reynolds, margaret
  • De Vries, Jacqueline

Abstract

This research produces Small Area Estimates (SAE) of the population at-risk of homelessness in Australia. The incidence of homelessness risk is measured as a rate per 10,000 residents aged 15 years and over, at the ABS defined spatial scales Statistical Area level 2 (SA2), with a population ranging from 3,000 to 25,000 persons, and Statistical Area level 3 (SA3), which are an aggregation of SA2s and have a population ranging from 30,000 to 130,000.

Suggested Citation

  • Batterham, Deb & Nygaard, Christian & reynolds, margaret & De Vries, Jacqueline, 2021. "Estimating the population at-risk of homelessness in small areas," SocArXiv hkc7y, Center for Open Science.
  • Handle: RePEc:osf:socarx:hkc7y
    DOI: 10.31219/osf.io/hkc7y
    as

    Download full text from publisher

    File URL: https://osf.io/download/61a06659422ad4026ed014d8/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hkc7y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    2. Suzanne Fitzpatrick & Julie Christian, 2006. "Comparing Homelessness Research in the US and Britain," International Journal of Housing Policy, Taylor & Francis Journals, vol. 6(3), pages 313-333.
    3. Deborah A. Cobb-Clark & Anna Zhu, 2017. "Childhood homelessness and adult employment: the role of education, incarceration, and welfare receipt," Journal of Population Economics, Springer;European Society for Population Economics, vol. 30(3), pages 893-924, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    2. Natascha Hainbach & Christoph Halbmeier & Timo Schmid & Carsten Schröder, 2019. "A Practical Guide for the Computation of Domain-Level Estimates with the Socio-Economic Panel (and Other Household Surveys)," SOEPpapers on Multidisciplinary Panel Data Research 1055, DIW Berlin, The German Socio-Economic Panel (SOEP).
    3. Marchetti Stefano & Tzavidis Nikos, 2021. "Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas," Journal of Official Statistics, Sciendo, vol. 37(4), pages 955-979, December.
    4. Harry Tan & Helen Forbes-Mewett, 2018. "Whose ‘fault’ is it? Becoming homeless in Singapore," Urban Studies, Urban Studies Journal Limited, vol. 55(16), pages 3579-3595, December.
    5. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2020. "Qualitätszielfunktionen für stark variierende Gemeindegrößen im Zensus 2021 [Quality measures respecting highly varying community sizes within the 2021 German Census]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 14(1), pages 5-65, March.
    6. Paul A. Smith & Chiara Bocci & Nikos Tzavidis & Sabine Krieg & Marc J. E. Smeets, 2021. "Robust estimation for small domains in business surveys," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 312-334, March.
    7. Hobbs, Sue D. & Bederian-Gardner, Daniel & Ogle, Christin M. & Bakanosky, Sarah & Narr, Rachel & Goodman, Gail S., 2021. "Foster youth and at-risk non-foster youth: A propensity score and structural equation modeling analysis," Children and Youth Services Review, Elsevier, vol. 126(C).
    8. Nora Würz & Timo Schmid & Nikos Tzavidis, 2022. "Estimating regional income indicators under transformations and access to limited population auxiliary information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1679-1706, October.
    9. Leung, Charles Ka Yui, 2022. "Housing and Macroeconomics," MPRA Paper 115500, University Library of Munich, Germany.
    10. Ann-Kristin Kreutzmann, 2018. "Estimation of sample quantiles: challenges and issues in the context of income and wealth distributions [Die Schätzung von Quantilen: Herausforderungen und Probleme im Kontext von Einkommens- und V," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 245-270, December.
    11. Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
    12. Suziedelyte, Agne & Zhu, Anna, 2021. "The intergenerational impact of reduced generosity in the social safety net," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 1-24.
    13. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    14. Jan Breitkreuz & Gabriela Brückner & Jan Pablo Burgard & Joscha Krause & Ralf Münnich & Helmut Schröder & Katrin Schüssel, 2019. "Schätzung kleinräumiger Krankheitshäufigkeiten für die deutsche Bevölkerung anhand von Routinedaten am Beispiel von Typ-2-Diabetes [Estimation of regional diabetes type 2 prevalence in the German p," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 13(1), pages 35-72, April.
    15. Till Koebe & Alejandra Arias‐Salazar & Natalia Rojas‐Perilla & Timo Schmid, 2022. "Intercensal updating using structure‐preserving methods and satellite imagery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 170-196, December.
    16. Kreutzmann, Ann-Kristin & Marek, Philipp & Salvati, Nicola & Schmid, Timo, 2019. "Estimating regional wealth in Germany: How different are East and West really?," Discussion Papers 35/2019, Deutsche Bundesbank.
    17. Richard J. Cebula & Gigi M. Alexander, 2020. "Economic and Noneconomic Factors Influencing Geographic Differentials in Homelessness: An Exploratory State‐Level Analysis," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(2), pages 511-540, March.
    18. Adam Chwila & Tomasz Żądło, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    19. Tonutti, Giovanni & Bertarelli, Gaia & Giusti, Caterina & Pratesi, Monica, 2022. "Disaggregation of poverty indicators by small area methods for assessing the targeting of the “Reddito di Cittadinanza” national policy in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Andreea L. Erciulescu & Jean D. Opsomer, 2022. "A model‐based approach to predict employee compensation components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1503-1520, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:hkc7y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.