IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/9ntk6.html
   My bibliography  Save this paper

Using Crowdsourced Data to Study Crime and Place

Author

Listed:
  • Buil-Gil, David

    (University of Manchester)

  • Solymosi, Reka

Abstract

Crowdsourcing refers to the practise of enlisting the knowledge, experience or skills of a large number of people (the crowd) through some digital platform to collect data towards a collaborative project. Crowdsourcing can generate large volumes of data in relatively little time at a very small cost, and can be useful for research, strategic police management and many other purposes. To make effective use of crowdsourced data, it is important to understand its key strengths to emphasize, and limitations to mitigate. In this chapter we highlight the main strengths and weaknesses of crowdsourcing, and illustrate how to acquire, make sense of, and critically evaluate crowdsourced data to study crime and place. We present a step-by-step exemplar study using crowdsourced data from a platform called Place Pulse, where people rate their feelings of safety between different areas. Taking the case study of Atlanta, Georgia, we work through analyzing and interpreting these data while highlighting how to emphasize and evaluate the strengths and limitations of crowdsourcing. Exercises are presented using R software.

Suggested Citation

  • Buil-Gil, David & Solymosi, Reka, 2020. "Using Crowdsourced Data to Study Crime and Place," SocArXiv 9ntk6, Center for Open Science.
  • Handle: RePEc:osf:socarx:9ntk6
    DOI: 10.31219/osf.io/9ntk6
    as

    Download full text from publisher

    File URL: https://osf.io/download/5f4a15870f9a080043ad8b99/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/9ntk6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-316, August.
    2. Philip Salesses & Katja Schechtner & César A Hidalgo, 2013. "The Collaborative Image of The City: Mapping the Inequality of Urban Perception," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Modalsli, Jørgen, 2011. "Inequality and growth in the very long run: inferring inequality from data on social groups," Memorandum 11/2011, Oslo University, Department of Economics.
    3. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    4. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    5. Stephen Davies & Peter L. Ormosi, 2014. "The economic impact of cartels and anti-cartel enforcement," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2013-07v2, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    6. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    7. Been, Vicki & Ellen, Ingrid Gould & Gedal, Michael & Glaeser, Edward & McCabe, Brian J., 2016. "Preserving history or restricting development? The heterogeneous effects of historic districts on local housing markets in New York City," Journal of Urban Economics, Elsevier, vol. 92(C), pages 16-30.
    8. Csörgö, Miklós & Zitikis, Ricardas, 1997. "On the rate of strong consistency of Lorenz curves," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 113-121, June.
    9. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    10. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    11. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    12. Ugo Panizza, 1999. "Desigualdad del ingreso y crecimiento económico: elementos de juicio de datos de USA," Research Department Publications 4179, Inter-American Development Bank, Research Department.
    13. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    14. Anthony B Aktinson, 2015. "Top incomes in East Africa before and after independence," Working Papers halshs-02654566, HAL.
    15. Huimin Xu & Shougeng Hu & Xi Li, 2023. "Urban Distribution and Evolution of the Yangtze River Economic Belt from the Perspectives of Urban Area and Night-Time Light," Land, MDPI, vol. 12(2), pages 1-21, January.
    16. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.
    17. Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
    18. Daranrat Jaitiang & Wen-Chi Huang & Shang-Ho Yang, 2021. "Does Income Inequality Exist among Urban Farmers? A Demonstration of Lorenz Curves from Northern Thailand," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
    19. Iain Willis & Maurizio Gibin & Joana Barros & Richard Webber, 2014. "Applying neighbourhood classification systems to natural hazards: a case study of Mt Vesuvius," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 1-22, January.
    20. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:9ntk6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.