The potential influence of machine learning and data science on the future of economics: Overview of highly-cited research
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/9nh8g_v1
Download full text from publisher
References listed on IDEAS
- Susan Athey & Michael Luca, 2019.
"Economists (and Economics) in Tech Companies,"
Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 209-230, Winter.
- Susan Athey & Michael Luca, 2018. "Economists (and Economics) in Tech Companies," Harvard Business School Working Papers 19-027, Harvard Business School.
- Athey, Susan & Luca, Michael, 2018. "Economists (and Economics) in Tech Companies," Research Papers 3735, Stanford University, Graduate School of Business.
- Susan Athey & Michael Luca, 2018. "Economists (and Economics) in Tech Companies," NBER Working Papers 25064, National Bureau of Economic Research, Inc.
- Ernst Ekkehardt & Merola Rossana & Samaan Daniel, 2019. "Economics of Artificial Intelligence: Implications for the Future of Work," IZA Journal of Labor Policy, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 9(1), pages 7-72, June.
- Ernst Ekkehardt & Merola Rossana & Samaan Daniel, 2019. "Economics of Artificial Intelligence: Implications for the Future of Work," IZA Journal of Labor Policy, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 9(1), pages 1-35, June.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Deshpande, Advait, 2020. "The potential influence of machine learning and data science on the future of economics: Overview of highly-cited research," SocArXiv 9nh8g, Center for Open Science.
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
GLO Discussion Paper Series
1445, Global Labor Organization (GLO).
- Dang, Hai-Anh H & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
- Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Askitas, Nikos, 2024.
"A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code,"
IZA Discussion Papers
17014, Institute of Labor Economics (IZA).
- Nikos Askitas & Nikolaos Askitas, 2024. "A Hands-On Machine Learning Primer for Social Scientists: Math, Algorithms and Code," CESifo Working Paper Series 11353, CESifo.
- Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
- Domonkos F. Vamossy, 2024. "Social Media Emotions and Market Behavior," Papers 2404.03792, arXiv.org.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2023.
"What Can Economics Say about Alzheimer's Disease?,"
Journal of Economic Literature, American Economic Association, vol. 61(2), pages 428-470, June.
- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2020. "What Can Economics Say About Alzheimer's Disease?," NBER Working Papers 27760, National Bureau of Economic Research, Inc.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023.
"Micro-geographic property price and rent indices,"
Regional Science and Urban Economics, Elsevier, vol. 98(C).
- Gabriel Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-Geographic Property Price and Rent Indices," CESifo Working Paper Series 9187, CESifo.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2021. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 113922, London School of Economics and Political Science, LSE Library.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 116649, London School of Economics and Political Science, LSE Library.
- Gabriel M. Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-geographic property price and rent indices," CEP Discussion Papers dp1782, Centre for Economic Performance, LSE.
- Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
- Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021.
"Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements,"
Policy Research Working Paper Series
9838, The World Bank.
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2025. "Poverty imputation in contexts without consumption data: a revisit with further refinements," LSE Research Online Documents on Economics 125798, London School of Economics and Political Science, LSE Library.
- Dang, Hai-Anh H & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," IZA Discussion Papers 15873, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," GLO Discussion Paper Series 1226, Global Labor Organization (GLO).
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022.
"Multiway Cluster Robust Double/Debiased Machine Learning,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2019. "Multiway Cluster Robust Double/Debiased Machine Learning," Papers 1909.03489, arXiv.org, revised Mar 2020.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:9nh8g_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.