IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/23brg.html
   My bibliography  Save this paper

Scalability in a two-class interoccupational earnings distribution model

Author

Listed:
  • Maia, Adriano
  • Matsushita, Raul
  • Demarcus, Antonio
  • Da Silva, Sergio

Abstract

In this study, we evaluate a two-class earnings distribution model that combines a power law distribution for higher-earning individuals and a lognormal distribution for the rest of the sample, while considering occupation scalability. We analyze data from the Brazilian labor market and model entire distributions, not just the tails. Our findings suggest that non-scalable occupations may be more egalitarian than scalable ones in the upper portion of the data from the optimal cutoff point.

Suggested Citation

  • Maia, Adriano & Matsushita, Raul & Demarcus, Antonio & Da Silva, Sergio, 2023. "Scalability in a two-class interoccupational earnings distribution model," SocArXiv 23brg, Center for Open Science.
  • Handle: RePEc:osf:socarx:23brg
    DOI: 10.31219/osf.io/23brg
    as

    Download full text from publisher

    File URL: https://osf.io/download/64f7cd16989de62b2ddd19af/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/23brg?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maia, Adriano & Matsushita, Raul & Da Silva, Sergio, 2020. "Earnings distributions of scalable vs. non-scalable occupations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    3. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    4. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    5. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    6. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    2. Blair Fix, 2018. "Hierarchy and the power-law income distribution tail," Journal of Computational Social Science, Springer, vol. 1(2), pages 471-491, September.
    3. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    4. Maia, Adriano & Matsushita, Raul & Da Silva, Sergio, 2020. "Earnings distributions of scalable vs. non-scalable occupations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Xu, Yan & Wang, Yougui & Tao, Xiaobo & Ližbetinová, Lenka, 2017. "Evidence of Chinese income dynamics and its effects on income scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 143-152.
    6. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    7. J. R. Iglesias & R. M. C. de Almeida, 2011. "Entropy and equilibrium state of free market models," Papers 1108.5725, arXiv.org.
    8. Aloys Prinz, 2017. "Rankings as coordination games: the Dutch Top 2000 pop song ranking," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 41(4), pages 379-401, November.
    9. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    10. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    11. Mimkes, Jürgen, 2010. "Stokes integral of economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1665-1676.
    12. Alberto Russo, 2009. "On the evolution of the Italian bank branch distribution," Economics Bulletin, AccessEcon, vol. 29(3), pages 2063-2078.
    13. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    14. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    15. Fabio Clementi & Mauro Gallegati, 2005. "Pareto's Law of Income Distribution: Evidence for Grermany, the United Kingdom, and the United States," Microeconomics 0505006, University Library of Munich, Germany.
    16. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    17. Inoue, Jun-ichi & Ghosh, Asim & Chatterjee, Arnab & Chakrabarti, Bikas K., 2015. "Measuring social inequality with quantitative methodology: Analytical estimates and empirical data analysis by Gini and k indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 184-204.
    18. Aloys Prinz, 2016. "Do capitalistic institutions breed billionaires?," Empirical Economics, Springer, vol. 51(4), pages 1319-1332, December.
    19. Chatterjee, Arnab & Chakrabarti, Anindya S. & Ghosh, Asim & Chakraborti, Anirban & Nandi, Tushar K., 2016. "Invariant features of spatial inequality in consumption: The case of India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 169-181.
    20. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:23brg. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.