IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/yv24f.html
   My bibliography  Save this paper

On Discrete Probability Distributions to Grasp the Number of Samples in a Population

Author

Listed:
  • Yabu, Takuya

Abstract

In situations where there are multiple options, when the number of options selected is known, the discrete probability distribution of the number of options selected is mathematically defined, and properties such as expected value and variance are shown. By using the discrete probability distributions derived in this paper, we can find the most probable number of people trying to buy and the most probable number of sales of other people's products when we know the number of sales of our own product. Therefore, application in the field of economics can be expected.

Suggested Citation

  • Yabu, Takuya, 2023. "On Discrete Probability Distributions to Grasp the Number of Samples in a Population," OSF Preprints yv24f, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:yv24f
    DOI: 10.31219/osf.io/yv24f
    as

    Download full text from publisher

    File URL: https://osf.io/download/63cd1047d1a7b70388641e42/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/yv24f?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
    2. Linda J. Young & Michael Jacobsen, 2022. "Sample Design and Estimation When Using a Web-Scraped List Frame and Capture-Recapture Methods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 261-279, June.
    3. Conti, Pier Luigi & Mecatti, Fulvia & Nicolussi, Federica, 2022. "Efficient unequal probability resampling from finite populations," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    4. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junsheng & Peng, Zezhi & Zeng, Yamin & Yang, Haisheng, 2023. "Do big data mutual funds outperform?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    2. Jérôme Dugast & Thierry Foucault, 2020. "Equilibrium Data Mining and Data Abundance," Post-Print hal-02933315, HAL.
    3. Melina & Sukono & Herlina Napitupulu & Norizan Mohamed, 2023. "A Conceptual Model of Investment-Risk Prediction in the Stock Market Using Extreme Value Theory with Machine Learning: A Semisystematic Literature Review," Risks, MDPI, vol. 11(3), pages 1-24, March.
    4. Grammig, Joachim & Hanenberg, Constantin & Schlag, Christian & Sönksen, Jantje, 2020. "Diverging roads: Theory-based vs. machine learning-implied stock risk premia," University of Tübingen Working Papers in Business and Economics 130, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
    5. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    6. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    7. Pier Luigi Conti & Fulvia Mecatti, 2022. "Resampling under Complex Sampling Designs: Roots, Development and the Way Forward," Stats, MDPI, vol. 5(1), pages 1-12, March.
    8. Wang, Jing & Yu, Huaying & Ren, Daowen & Zhang, Jocelyn, 2023. "Promoting mineral resources consumption efficiency: Evidence from technology of big data," Resources Policy, Elsevier, vol. 86(PB).
    9. Bo Yan & Mengru Liang & Yinxin Zhao, 2024. "Market sentiment and price dynamics in weak markets: A comprehensive empirical analysis of the soybean meal option market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 744-766, May.
    10. Ghodrati, Laya & Panaretos, Victor M., 2023. "Minimax rate for optimal transport regression between distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
    11. Jean-François Beaumont & Nelson Émond, 2022. "A Bootstrap Variance Estimation Method for Multistage Sampling and Two-Phase Sampling When Poisson Sampling Is Used at the Second Phase," Stats, MDPI, vol. 5(2), pages 1-19, March.
    12. Kaplanski, Guy, 2023. "The race to exploit anomalies and the cost of slow trading," Journal of Financial Markets, Elsevier, vol. 62(C).
    13. Sonya Georgieva, 2023. "Application of Artificial Intelligence and Machine Learning in the Conduct of Monetary Policy by Central Banks," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 8, pages 177-199.
    14. Christopher G. Lamoureux & Huacheng Zhang, 2021. "An Empirical Assessment of Characteristics and Optimal Portfolios," Papers 2104.12975, arXiv.org, revised Feb 2024.
    15. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
    16. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    17. James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    18. Thomas-Agnan, Christine & Simioni, Michel & Trinh, Thi-Huong, 2023. "Discrete and Smooth Scalar-on-Density Compositional Regression for Assessing the Impact of Climate Change on Rice Yield in Vietnam," TSE Working Papers 23-1410, Toulouse School of Economics (TSE), revised Apr 2024.
    19. Carter Davis, 2023. "The Elasticity of Quantitative Investment," Papers 2303.14533, arXiv.org, revised Sep 2024.
    20. Genest, Christian & Hron, Karel & Nešlehová, Johanna G., 2023. "Orthogonal decomposition of multivariate densities in Bayes spaces and relation with their copula-based representation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:yv24f. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.