IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/y75rq.html
   My bibliography  Save this paper

Applying AI to Sustainability Policy Challenges: A Practical Playbook

Author

Listed:
  • Saeri, Alexander K
  • O'Connor, Ruby

Abstract

This playbook, written by researchers at Monash University, is a practical guide for academic AI experts to help them apply artificial intelligence (AI) tools and techniques to complex challenges in policy and sustainability. It includes a five step guide: (1) Finding and working with partners (2) Understanding the problem (3) Assessing fit and selecting an AI approach (4) Design and validation of AI tool(s) (5) Embedding the AI tool in practice. It also provides a simple introduction to policy, sustainability & sustainable development, and the current evidence on the promise & reality of applying AI to these challenges. As part of the attached OSF project, templates are provided to plan and conduct partner workshops and propose collaborative pilot projects.

Suggested Citation

  • Saeri, Alexander K & O'Connor, Ruby, 2023. "Applying AI to Sustainability Policy Challenges: A Practical Playbook," OSF Preprints y75rq, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:y75rq
    DOI: 10.31219/osf.io/y75rq
    as

    Download full text from publisher

    File URL: https://osf.io/download/657fbff04a0e901c378e9109/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/y75rq?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    3. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    4. Stéphanie Camaréna, 2021. "Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-40, December.
    6. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    7. Gianluca MISURACA & Colin van Noordt, 2020. "AI Watch - Artificial Intelligence in public services: Overview of the use and impact of AI in public services in the EU," JRC Research Reports JRC120399, Joint Research Centre.
    8. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    9. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    10. Jaros³aw Brodny & Magdalena Tutak, 2023. "The level of implementing sustainable development goal "Industry, innovation and infrastructure" of Agenda 2030 in the European Union countries: Application of MCDM methods," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 47-102, March.
    11. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    12. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Sergio Genovesi & Julia Maria Mönig, 2022. "Acknowledging Sustainability in the Framework of Ethical Certification for AI," Sustainability, MDPI, vol. 14(7), pages 1-10, March.
    14. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    15. Wang, Weilong & Xiao, Deheng & Wang, Jianlong & Wu, Haitao, 2024. "The cost of pollution in the digital era: Impediments of air pollution on enterprise digital transformation," Energy Economics, Elsevier, vol. 134(C).
    16. Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    17. Ricardo Vinuesa & Soledad Le Clainche, 2022. "Machine-Learning Methods for Complex Flows," Energies, MDPI, vol. 15(4), pages 1-5, February.
    18. Qian, Yu & Xu, Zeshui & Qin, Yong & Gou, Xunjie & Skare, Marinko, 2023. "Measuring the varying relationships between sustainable development and oil booms in different contexts: An empirical study," Resources Policy, Elsevier, vol. 85(PB).
    19. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
    20. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:y75rq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.