IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/vncgw_v1.html
   My bibliography  Save this paper

ClockBoard: a zoning system for urban analysis

Author

Listed:
  • Lovelace, Robin
  • Tennekes, Martijn
  • Carlino, Dustin

Abstract

Zones are the building blocks of urban analysis. Fields ranging from demographics to transport planning routinely use zones — spatially contiguous areal units that break-up continuous space into discrete chunks — as the foundation for diverse analysis techniques. Key methods such as origin-destination analysis and choropleth mapping rely on zones with appropriate sizes, shapes and coverage. However, existing zoning systems are sub-optimal in many urban analysis contexts, for three main reasons: 1) available administrative zoning systems are often based on somewhat arbitrary factors; 2) evidence-based zoning systems are often highly variable in size and shape, reducing their utility for inter-city comparison; and 3) official zoning systems are non-existent, not publicly available, or are too coarse, hindering urban analysis in many places, especially in low income nations. To tackle these three key issues we developed a flexible, open and scalable solution: the ClockBoard zoning system. ClockBoard consists of 12 segments divided by concentric rings of increasing distance, creating a consistent visual frame of reference for cities that is reminiscent of a clock and a dartboard. This paper outlines the design, potential uses and merits of the ClockBoard zoning system and discusses future avenues for research and development of new zoning systems based on the experience.

Suggested Citation

  • Lovelace, Robin & Tennekes, Martijn & Carlino, Dustin, 2021. "ClockBoard: a zoning system for urban analysis," OSF Preprints vncgw_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:vncgw_v1
    DOI: 10.31219/osf.io/vncgw_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6115335fe790da009e4daa1a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/vncgw_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Alidadi & Hashem Dadashpoor, 2018. "Beyond monocentricity: examining the spatial distribution of employment in Tehran metropolitan region, Iran," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(1), pages 38-58, January.
    2. Talbot, Joseph & Lucas-Smith, Martin & Speakman, Andrew & Streb, Megan & Nuttall, Simon & Carlino, Dustin & Johansson, Patrick & Sheehan, Nathanael & Groot, Nikée & Lovelace, Robin, 2021. "Active Travel Oriented Development: Assessing the suitability of sites for new homes," OSF Preprints 7fuq5, Center for Open Science.
    3. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    4. Boeing, Geoff, 2021. "Spatial information and the legibility of urban form: Big data in urban morphology," International Journal of Information Management, Elsevier, vol. 56(C).
    5. Christopher Wills & Kyle E Harms & Thorsten Wiegand & Ruwan Punchi-Manage & Gregory S Gilbert & David Erickson & W John Kress & Stephen P Hubbell & C V Savitri Gunatilleke & I A U Nimal Gunatilleke, 2016. "Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovelace, Robin & Tennekes, Martijn & Carlino, Dustin, 2021. "ClockBoard: a zoning system for urban analysis," OSF Preprints vncgw, Center for Open Science.
    2. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    3. Edward Kim, M. & Schonfeld, Paul & Roche, Austin & Raleigh, Chelsie, 2022. "Optimal service zones and frequencies for flexible-route freight deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 182-199.
    4. Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
    5. Francesco Cappa & Stefano Franco & Federica Rosso, 2022. "Citizens and cities: Leveraging citizen science and big data for sustainable urban development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 648-667, February.
    6. Arianna Salazar Miranda & Guangyu Du & Claire Gorman & Fabio Duarte & Washington Fajardo & Carlo Ratti, 2022. "Favelas 4D: Scalable methods for morphology analysis of informal settlements using terrestrial laser scanning data," Environment and Planning B, , vol. 49(9), pages 2345-2362, November.
    7. Chakrabarti, Sandip & Kushari, Triparnee & Mazumder, Taraknath, 2022. "Does transportation network centrality determine housing price?," Journal of Transport Geography, Elsevier, vol. 103(C).
    8. Sadegh Fathi & Hassan Sajadzadeh & Faezeh Mohammadi Sheshkal & Farshid Aram & Gergo Pinter & Imre Felde & Amir Mosavi, 2020. "The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health," IJERPH, MDPI, vol. 17(7), pages 1-29, March.
    9. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    11. Juan Zhu & Xinyi Niu & Yao Wang, 2024. "Polycentric Urban Spatial Structure Identification Based on Morphological and Functional Dimensions: Evidence from Three Chinese Cities," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    12. Sunil Kumar & Swagata Ghosh & Sultan Singh, 2022. "Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8246-8286, June.
    13. Chen Chen, 2023. "Changes in the Spatial Distribution of the Employed Population in the Yangtze River Delta Region since the 21st Century: An Analysis and Discussion Based on Census Data," Land, MDPI, vol. 12(6), pages 1-24, June.
    14. Askarizad, Reza & Lamíquiz Daudén, Patxi José & Garau, Chiara, 2024. "Exploring the role of configurational accessibility of alleyways on facilitating wayfinding transportation within the organic street network systems," Transport Policy, Elsevier, vol. 157(C), pages 179-194.
    15. Sven Eggimann, 2022. "The potential of implementing superblocks for multifunctional street use in cities," Nature Sustainability, Nature, vol. 5(5), pages 406-414, May.
    16. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    17. Jun Zhang & Xue Zhang & Xueping Tan & Xiaodie Yuan, 2022. "Extraction of Urban Built-Up Area Based on Deep Learning and Multi-Sources Data Fusion—The Application of an Emerging Technology in Urban Planning," Land, MDPI, vol. 11(8), pages 1-19, August.
    18. Yang, Binyu & Tian, Yuan & Wang, Jian & Hu, Xiaowei & An, Shi, 2022. "How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation," Transport Policy, Elsevier, vol. 127(C), pages 1-14.
    19. Yun Han & Chunpeng Qin & Longzhu Xiao & Yu Ye, 2024. "The nonlinear relationships between built environment features and urban street vitality: A data-driven exploration," Environment and Planning B, , vol. 51(1), pages 195-215, January.
    20. Gladys Elizabeth Kenyon & Dani Arribas-Bel & Caitlin Robinson, 2024. "Extracting Features from Satellite Imagery to Understand the Size and Scale of Housing Sub-Markets in Madrid," Land, MDPI, vol. 13(5), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:vncgw_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.