IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/ube2z_v1.html
   My bibliography  Save this paper

Uniswap Daily Transaction Indices by Network

Author

Listed:
  • Chemaya, Nir
  • Cong, Lin William
  • Joergensen, Emma
  • Liu, Dingyue
  • Zhang, Luyao

Abstract

Decentralized Finance (DeFi) is revolutionizing traditional financial services by enabling direct, intermediary-free transactions, thereby generating a substantial volume of open-source transaction data. This evolving DeFi landscape is particularly influenced by the emergence of Layer 2 (L2) solutions, which are poised to enhance network efficiency and scalability significantly, surpassing the existing capabilities of Layer 1 (L1) infrastructures. However, the detailed impact of these L2 solutions has been somewhat obscured due to a dearth of transaction data indices that can provide in-depth economic insights for empirical research. This study seeks to address this critical gap by conducting a comprehensive analysis of raw transactions sourced from Uniswap, a central decentralized exchange (DEX) within the DeFi ecosystem. The dataset encompasses an extensive collection of over 50 million transactions from both L1 and L2 networks. Additionally, we have curated a wide-ranging repository of daily indices derived from transaction trading data across prominent blockchain networks, including Ethereum, Optimism, Arbitrum, and Polygon. These indices shed light on crucial network dynamics, such as adoption trends, evaluations of scalability, decentralization metrics, wealth distribution patterns, and other key aspects of the DeFi landscape. This rich dataset serves as an invaluable tool, enabling researchers to dissect the complex interplay between DeFi and Layer 2 solutions, thus enhancing our collective understanding of this rapidly evolving ecosystem. Its notable contribution to the data science pipeline includes the implementation of a flexible, open-source Python framework, enabling the dynamic calculation of decentralization indices, customizable to specific research requirements. This adaptability makes the dataset particularly suitable for advanced machine learning applications, including deep learning, thereby solidifying its role as a critical asset in shaping Blockchain as the foundational infrastructure for the intelligent Web3 ecosystem.

Suggested Citation

  • Chemaya, Nir & Cong, Lin William & Joergensen, Emma & Liu, Dingyue & Zhang, Luyao, 2023. "Uniswap Daily Transaction Indices by Network," OSF Preprints ube2z_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:ube2z_v1
    DOI: 10.31219/osf.io/ube2z_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/656efcdea0121a23de317a9c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/ube2z_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ube2z_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.