Author
Listed:
- Mathur, Maya B
- VanderWeele, Tyler J.
Abstract
We propose sensitivity analyses for publication bias in meta-analyses. We consider a publication process such that "statistically significant" results are more likely to be published than negative or "nonsignificant" results by an unknown ratio, eta. Our proposed methods also accommodate some plausible forms of selection based on a study's standard error. Using inverse-probability weighting and robust estimation that accommodates non-normal population effects, small meta-analyses, and clustering, we develop sensitivity analyses that enable statements such as: "For publication bias to shift the observed point estimate to the null, 'significant' results would need to be at least 30-fold more likely to be published than negative or 'nonsignificant' results." Comparable statements can be made regarding shifting to a chosen non-null value or shifting the confidence interval. To aid interpretation, we describe empirical benchmarks for plausible values of eta across disciplines. We show that a worst-case meta-analytic point estimate for maximal publication bias under the selection model can be obtained simply by conducting a standard meta-analysis of only the negative and "nonsignificant" studies; this method sometimes indicates that no amount of such publication bias could "explain away" the results. We illustrate the proposed methods using real-life meta-analyses and provide an R package, PublicationBias.
Suggested Citation
Mathur, Maya B & VanderWeele, Tyler J., 2019.
"Sensitivity analysis for publication bias in meta-analyses,"
OSF Preprints
s9dp6_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:s9dp6_v1
DOI: 10.31219/osf.io/s9dp6_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:s9dp6_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.