IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/paby6.html
   My bibliography  Save this paper

Hybrid elicitation and indirect Bayesian inference with quantile-parametrized likelihood

Author

Listed:
  • Perepolkin, Dmytro
  • Goodrich, Benjamin
  • Sahlin, Ullrika

Abstract

This paper extends the application of indirect Bayesian inference to probability distributions defined in terms of quantiles of the observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and interpretability of its parameters, and are therefore useful for elicitation on observables. To encode uncertainty in the quantiles elicited from experts, we propose a Bayesian model based on the metalog distribution and a version of the Dirichlet prior. The resulting “hybrid” expert elicitation protocol for characterizing uncertainty in parameters using questions about the observable quantities is discussed and contrasted to parametric and predictive elicitation.

Suggested Citation

  • Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "Hybrid elicitation and indirect Bayesian inference with quantile-parametrized likelihood," OSF Preprints paby6, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:paby6
    DOI: 10.31219/osf.io/paby6
    as

    Download full text from publisher

    File URL: https://osf.io/download/6152be62ec7885011a413b3e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/paby6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baey, Charlotte & Smith, Henrik G. & Rundlöf, Maj & Olsson, Ola & Clough, Yann & Sahlin, Ullrika, 2023. "Calibration of a bumble bee foraging model using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 477(C).
    2. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an, Center for Open Science.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:paby6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.