Author
Abstract
Goldberg’s (2006) bass-ackward approach to elucidating the hierarchical structure of individual differences data has been used widely to improve our understanding of the relationships among constructs of varying levels of granularity. The traditional approach has been to extract a single component or factor on the first level of the hierarchy, two on the second level, and so on, treating the correlations between adjoining levels akin to path coefficients in a hierarchical structure. This article proposes three modifications to the traditional approach with a particular focus on examining associations among all levels of the hierarchy: 1) identify and remove redundant elements that perpetuate through multiple levels of the hierarchy; 2) (optionally) identify and remove artefactual elements; and 3) plot the strongest correlations among the remaining elements to identify their hierarchical associations. Together these steps can offer a simpler and more complete picture of the underlying hierarchical structure among a set of observed variables. The rationale for each step is described, illustrated in a hypothetical example and three basic simulations, and then applied in real data. The results are compared to the traditional bass-ackward approach together with agglomerative hierarchical cluster analysis, and a basic tutorial with code is provided to apply the extended bass-ackward approach in other data.
Suggested Citation
Forbes, Miriam K., 2020.
"Improving hierarchical models of individual differences: An extension of Goldberg’s bass-ackward method,"
OSF Preprints
ksxwv_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:ksxwv_v1
DOI: 10.31219/osf.io/ksxwv_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ksxwv_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.