IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/hq4k6.html
   My bibliography  Save this paper

Reject Inference

Author

Listed:
  • Tom, Daniel M. Ph.D.

Abstract

Inferring the performance of rejects with a reject inference model built on the approved provides no new information. Nevertheless, a model built on just those approved already extrapolates quite well in the reject region. To check if there are limitations, we devise a RI test to determine if a broader approved population is needed for development.

Suggested Citation

  • Tom, Daniel M. Ph.D., 2024. "Reject Inference," OSF Preprints hq4k6, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:hq4k6
    DOI: 10.31219/osf.io/hq4k6
    as

    Download full text from publisher

    File URL: https://osf.io/download/6635a2cc4664da2108ed6b08/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hq4k6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiefer, Nicholas M. & Larson, C. Erik, 2006. "Specification and Informational Issues in Credit Scoring," Working Papers 06-11, Cornell University, Center for Analytic Economics.
    2. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    3. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    4. Y Kim & S Y Sohn, 2007. "Technology scoring model considering rejected applicants and effect of reject inference," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1341-1347, October.
    5. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    6. Pulina, Manuela & Paba, Antonello, 2010. "A discrete choice approach to model credit card fraud," MPRA Paper 20019, University Library of Munich, Germany.
    7. Banasik, John & Crook, Jonathan, 2007. "Reject inference, augmentation, and sample selection," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1582-1594, December.
    8. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    9. Dorfleitner, G. & Just-Marx, S. & Priberny, C., 2017. "What drives the repayment of agricultural micro loans? Evidence from Nicaragua," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 89-100.
    10. Dongwoo Kim, 2023. "Can investors’ collective decision-making evolve? Evidence from peer-to-peer lending markets," Electronic Commerce Research, Springer, vol. 23(2), pages 1323-1358, June.
    11. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    12. J Banasik & J Crook, 2010. "Reject inference in survival analysis by augmentation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 473-485, March.
    13. Dong-Her Shih & Ting-Wei Wu & Po-Yuan Shih & Nai-An Lu & Ming-Hung Shih, 2022. "A Framework of Global Credit-Scoring Modeling Using Outlier Detection and Machine Learning in a P2P Lending Platform," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
    14. Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
    15. Luisa ANDERLONI & Daniela VANDONE, 2010. "Risk of over-indebtedness and behavioural factors," Departmental Working Papers 2010-25, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. J Banasik & J Crook, 2005. "Credit scoring, augmentation and lean models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1072-1081, September.
    17. Shen, Feng & Zhang, Xin & Wang, Run & Lan, Dao & Zhou, Wei, 2022. "Sequential optimization three-way decision model with information gain for credit default risk evaluation," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1116-1128.
    18. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.
    19. Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
    20. Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:hq4k6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.