IDEAS home Printed from https://ideas.repec.org/p/ecl/corcae/06-11.html
   My bibliography  Save this paper

Specification and Informational Issues in Credit Scoring

Author

Listed:
  • Kiefer, Nicholas M.

    (Cornell U and US Department of the Treasury)

  • Larson, C. Erik

    (Fannie Mae)

Abstract

Lenders use rating and scoring models to rank credit applicants on their expected performance. The models and approaches are numerous. We explore the possibility that estimates generated by models developed with data drawn solely from extended loans are less valuable than they should be because of selectivity bias. We investigate the value of "reject inference"--methods that use a rejected applicant's characteristics, rather than loan performance data, in scoring model development. In the course of making this investigation, we also discuss the advantages of using parametric as well as nonparametric modeling. These issues are discussed and illustrated in the context of a simple stylized model.

Suggested Citation

  • Kiefer, Nicholas M. & Larson, C. Erik, 2006. "Specification and Informational Issues in Credit Scoring," Working Papers 06-11, Cornell University, Center for Analytic Economics.
  • Handle: RePEc:ecl:corcae:06-11
    as

    Download full text from publisher

    File URL: https://cae.economics.cornell.edu/06-11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    3. Harold Bierman, Jr. & Warren H. Hausman, 1970. "The Credit Granting Decision," Management Science, INFORMS, vol. 16(8), pages 519-532, April.
    4. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    5. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glennon, Dennis & Kiefer, Nicholas M. & Larson, C. Erik & Choi, Hwan-sik, 2007. "Development and Validation of Credit-Scoring Models," Working Papers 07-12, Cornell University, Center for Analytic Economics.
    2. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    3. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    4. Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich & S'ebastien Beben, 2019. "R\'eint\'egration des refus\'es en Credit Scoring," Papers 1903.10855, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    2. Rogelio A. Mancisidor & Michael Kampffmeyer & Kjersti Aas & Robert Jenssen, 2019. "Deep Generative Models for Reject Inference in Credit Scoring," Papers 1904.11376, arXiv.org, revised Sep 2021.
    3. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    4. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    5. Renaud Bourlès & Anastasia Cozarenco & Dominique Henriet & Xavier Joutard, 2022. "Business Training with a Better-Informed Lender: Theory and Evidence from Microcredit in France," Annals of Economics and Statistics, GENES, issue 148, pages 65-108.
    6. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    7. Y Kim & S Y Sohn, 2007. "Technology scoring model considering rejected applicants and effect of reject inference," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1341-1347, October.
    8. Li Gan & Roberto Mosquera, 2008. "An Empirical Study of the Credit Market with Unobserved Consumer Typers," NBER Working Papers 13873, National Bureau of Economic Research, Inc.
    9. Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
    10. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    11. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    12. Banasik, John & Crook, Jonathan, 2007. "Reject inference, augmentation, and sample selection," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1582-1594, December.
    13. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    14. J Banasik & J Crook & L Thomas, 2003. "Sample selection bias in credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 822-832, August.
    15. Fourgeaud Claude & Gourieroux Christian & Pradel Jacqueline, 1990. "Sélection de clientèle et tarification de prêt bancaire," CEPREMAP Working Papers (Couverture Orange) 9004, CEPREMAP.
    16. Chee Kian Leong, 2016. "Credit Risk Scoring with Bayesian Network Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 423-446, March.
    17. Mark Schreiner, 2001. "Scoring Drop-Out at a Microlender in Bolivia," Development and Comp Systems 0109009, University Library of Munich, Germany.
    18. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    19. Eun-Ju Lee & David Eastwood & Jinkook Lee, 2004. "A Sample Selection Model of Consumer Adoption of Computer Banking," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(3), pages 263-275, December.
    20. Wolter, Marcus & Rösch, Daniel, 2014. "Cure events in default prediction," European Journal of Operational Research, Elsevier, vol. 238(3), pages 846-857.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:06-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cacorus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.