IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/h29qv_v1.html
   My bibliography  Save this paper

Cross-domain Visual Exploration of Academic Corpora via the Latent Meaning of User-authored Keywords

Author

Listed:
  • Benito-Santos, Alejandro
  • Theron, Roberto

Abstract

Nowadays, scholars dedicate a substantial amount of their work to the querying and browsing of increasingly large collections of research papers on the Internet. In parallel, the recent surge of novel interdisciplinary approaches in science requires scholars to acquire competencies in new fields for which they may lack the necessary vocabulary to formulate adequate queries. This problem, together with the issue of information overload, poses new challenges in the fields of natural language processing (NLP) and visualization design that call for a rapid response from the scientific community. In this respect, we report on a novel visualization scheme that enables the exploration of research paper collections via the analysis of semantic proximity relationships found in author-assigned keywords. Our proposal replaces traditional string queries by a bag-of-words (BoW) extracted from a user-generated auxiliary corpus that captures the intentionality of the research. Continuing on the line established by previous works, we combine novel advances in the fields of NLP with visual network analysis techniques to offer scholars a perspective of the target corpus that better fits their research needs. To highlight the advantages of our proposal, we conduct two experiments employing a collection of visualization research papers and an auxiliary cross-domain BoW. Here, we showcase how our visualization can be used to maximize the effectiveness of a browsing session by enhancing the language acquisition task, which allows an effective extraction of knowledge that is in line with the users’ previous expectations.

Suggested Citation

  • Benito-Santos, Alejandro & Theron, Roberto, 2019. "Cross-domain Visual Exploration of Academic Corpora via the Latent Meaning of User-authored Keywords," OSF Preprints h29qv_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:h29qv_v1
    DOI: 10.31219/osf.io/h29qv_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5cd03e16103390001a9caba9/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/h29qv_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsung Teng Chen, 2012. "The development and empirical study of a literature review aiding system," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 105-116, July.
    2. Michael D. Gordon & Susan Dumais, 1998. "Using latent semantic indexing for literature based discovery," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(8), pages 674-685.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benito-Santos, Alejandro & Theron, Roberto, 2019. "Cross-domain Visual Exploration of Academic Corpora via the Latent Meaning of User-authored Keywords," OSF Preprints h29qv, Center for Open Science.
    2. Jose M. Vicente-Gomila, 2014. "The contribution of syntactic–semantic approach to the search for complementary literatures for scientific or technical discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 659-673, September.
    3. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    4. Johannes Stegmann & Guenter Grohmann, 2003. "Hypothesis generation guided by co-word clustering," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(1), pages 111-135, January.
    5. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    6. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    7. Choudhury, Nazim & Faisal, Fahim & Khushi, Matloob, 2020. "Mining Temporal Evolution of Knowledge Graphs and Genealogical Features for Literature-based Discovery Prediction," Journal of Informetrics, Elsevier, vol. 14(3).
    8. Jason Portenoy & Jevin D. West, 2020. "Constructing and evaluating automated literature review systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3233-3251, December.
    9. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    10. Justin Mower & Trevor Cohen & Devika Subramanian, 2020. "Complementing Observational Signals with Literature-Derived Distributed Representations for Post-Marketing Drug Surveillance," Drug Safety, Springer, vol. 43(1), pages 67-77, January.
    11. Ronald Kostoff & Raymond Koytcheff & Clifford Lau, 2008. "Structure of the nanoscience and nanotechnology applications literature," The Journal of Technology Transfer, Springer, vol. 33(5), pages 472-484, October.
    12. Kostoff, R.N. & Tshiteya, R. & Pfeil, K.M. & Humenik, J.A. & Karypis, G., 2005. "Power source roadmaps using bibliometrics and database tomography," Energy, Elsevier, vol. 30(5), pages 709-730.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:h29qv_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.