IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/g2q5t_v1.html
   My bibliography  Save this paper

Machine Learning for Blockchain: Literature Review and Open Research Questions

Author

Listed:
  • Zhang, Luyao

Abstract

In this research, we explore the nexus between artificial intelligence (AI) and blockchain, two paramount forces steering the contemporary digital era. AI, replicating human cognitive functions, encompasses capabilities from visual discernment to complex decision-making, with significant applicability in sectors such as healthcare and finance. Its influence during the web2 epoch not only enhanced the prowess of user-oriented platforms but also prompted debates on centralization. Conversely, blockchain provides a foundational structure advocating for decentralized and transparent transactional archiving. Yet, the foundational principle of "code is law" in blockchain underscores an imperative need for the fluid adaptability that AI brings. Our analysis methodically navigates the corpus of literature on the fusion of blockchain with machine learning, emphasizing AI's potential to elevate blockchain's utility. Additionally, we chart prospective research trajectories, weaving together blockchain and machine learning in niche domains like causal machine learning, reinforcement mechanism design, and cooperative AI. These intersections aim to cultivate interdisciplinary pursuits in AI for Science, catering to a broad spectrum of stakeholders.

Suggested Citation

  • Zhang, Luyao, 2023. "Machine Learning for Blockchain: Literature Review and Open Research Questions," OSF Preprints g2q5t_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:g2q5t_v1
    DOI: 10.31219/osf.io/g2q5t_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/654337e0164d321b2ba5df4f/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/g2q5t_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:g2q5t_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.