IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/5g8wy_v1.html
   My bibliography  Save this paper

Large-scale 3D building and tree datasets constructed from airborne LiDAR point clouds in Glasgow, UK

Author

Listed:
  • Li, Qiaosi
  • Zhao, Qunshan

Abstract

Three-dimensional (3D) city models offer visual representation, interaction, analysis, and exploration of urban landscapes. However, most cities do not have open 3D city model datasets. This study used large-scale high-density airborne LiDAR point clouds to produce 3D building and tree datasets for Glasgow City. We proposed an open-source and efficient data analysis workflow that integrated a weakly supervised deep learning point cloud classification algorithm and a data-driven 3D model reconstruction method. The Glasgow 3D city model datasets include 3D building and tree data. The cross-reference results show that our building footprint aligned well with UK Ordnance Survey data (intersection over union of 82.67\% for overlay, R = 0.93 and RMSE = 1.84 m for building height). Building models well represent outer shell features with an average RMSE = 0.54 m for the distance between point clouds and reconstructed models. This accurate 3D city model data can be used in multiple environmental applications in Glasgow, and the open-source data generation workflow can be extended to other major cities for similar applications.

Suggested Citation

  • Li, Qiaosi & Zhao, Qunshan, 2024. "Large-scale 3D building and tree datasets constructed from airborne LiDAR point clouds in Glasgow, UK," OSF Preprints 5g8wy_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:5g8wy_v1
    DOI: 10.31219/osf.io/5g8wy_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/675c06e67f44bf1b2a936c07/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5g8wy_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon) & Yu, Haiyi, 2022. "Urban building energy and microclimate modeling – From 3D city generation to dynamic simulations," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Abdul Mateen & Tariq, Muhammad Abubakar & Alam, Zeshan & Alaloul, Wesam Salah & Waqar, Ahsan, 2024. "Optimizing energy efficiency through building orientation and building information modelling (BIM) in diverse terrains: A case study in Pakistan," Energy, Elsevier, vol. 311(C).
    2. Mariana Januário & Ricardo Gomes & Patrícia Baptista & Paulo Ferrão, 2024. "Integrated Energy and Environmental Modeling to Design Cost-Effective Building Solutions at a Regional Level," Energies, MDPI, vol. 17(22), pages 1-33, November.
    3. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    4. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    5. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
    6. Niall Buckley & Claudia Bo & Faezeh Delkhah & Niall Byrne & Avril Ní Shearcaigh & Stephanie Brennan & Dayanne Peretti Correa, 2024. "Evaluation of a Peer-to-Peer Smart Grid Using Digital Twins: A Case Study of a Remote European Island," Energies, MDPI, vol. 17(22), pages 1-16, November.
    7. Vahid-Ghavidel, Morteza & Jafari, Mehdi & Letellier-Duchesne, Samuel & Berzolla, Zachary & Reinhart, Christoph & Botterud, Audun, 2024. "Integrated energy demand-supply modeling for low-carbon neighborhood planning," Applied Energy, Elsevier, vol. 358(C).
    8. Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
    9. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    10. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    11. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    14. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
    15. Anca Patricia Grădinaru & Ana-Cornelia Badea & Petre Iuliu Dragomir & Gheorghe Badea, 2023. "Integrating Cadastral Data with Seismic Risk Data in an Online Building Database for the Historical Centre of Bucharest City," Land, MDPI, vol. 12(8), pages 1-30, August.
    16. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    17. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Ehsan Kamel, 2022. "A Systematic Literature Review of Physics-Based Urban Building Energy Modeling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation," Energies, MDPI, vol. 15(22), pages 1-24, November.
    19. Bass, Brett & New, Joshua & Clinton, Nicholas & Adams, Mark & Copeland, Bill & Amoo, Charles, 2022. "How close are urban scale building simulations to measured data? Examining bias derived from building metadata in urban building energy modeling," Applied Energy, Elsevier, vol. 327(C).
    20. Jin, Xiaoyu & Xiao, Fu & Zhang, Chong & Chen, Zhijie, 2022. "Semi-supervised learning based framework for urban level building electricity consumption prediction," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:5g8wy_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.