IDEAS home Printed from https://ideas.repec.org/p/osf/eartha/e9wsu.html
   My bibliography  Save this paper

Probabilistic space- and time-interaction modeling of main-shock earthquake rupture occurrence

Author

Listed:
  • Ceferino, Luis
  • Kiremidjian, Anne
  • Deierlein, Gregory

Abstract

This paper presents a probabilistic formulation for modeling earthquake rupture processes of mainshocks. A correlated multivariate Bernoulli distribution is used to model rupture occurrence. The model captures time interaction through the use of Brownian passage-time (BPT) distributions to assess rupture interarrival in multiple sections of the fault, and it also considers spatial interaction through the use of spatial correlograms. The correlograms represents the effect of rupture nucleation and propagation. This model is proposed as an attractive alternative to existing probabilistic models because it (1) incorporates time and space interactions of mainshocks, (2) preserves the marginal distributions of interarrival times after including spatial rupture interactions (i.e., model consistency), and (3) has an implicit physical interpretation aligned with recent rupture behavior observations. The proposed model is applied to assess the occurrence of large interface earthquakes in the subduction zone along the Coast of Lima, Peru. The model matches both the annual magnitude exceedance rates and the average seismic moment release in the tectonic region. Time-dependent seismic hazard in the region is also calculated, and the results demonstrate that by accounting for recent earthquake occurrences, the inclusion of time-dependent effects can reduce the 30-year seismic hazard by a factor of four.

Suggested Citation

  • Ceferino, Luis & Kiremidjian, Anne & Deierlein, Gregory, 2018. "Probabilistic space- and time-interaction modeling of main-shock earthquake rupture occurrence," Earth Arxiv e9wsu, Center for Open Science.
  • Handle: RePEc:osf:eartha:e9wsu
    DOI: 10.31219/osf.io/e9wsu
    as

    Download full text from publisher

    File URL: https://osf.io/download/5cc5e6c042c4b70017b5189f/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/e9wsu?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vitor Silva & Helen Crowley & Marco Pagani & Damiano Monelli & Rui Pinho, 2014. "Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1409-1427, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afiqah Ismail & Ahmad Safuan A. Rashid & Talal Amhadi & Ramli Nazir & Masyhur Irsyam & Lutfi Faizal, 2024. "Exploring the Evolution of Seismic Hazard and Risk Assessment Research: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    2. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    3. Ruth M. J. Amey & John R. Elliott & C. Scott Watson & Richard Walker & Marco Pagani & Vitor Silva & Ekbal Hussain & Kanatbek E. Abdrakhmatov & Sultan Baikulov & Gulkaiyr Tilek Kyzy, 2023. "Improving urban seismic risk estimates for Bishkek, Kyrgyzstan, through incorporating recently gained geological knowledge of hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 365-399, March.
    4. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    5. Ghazanfar Ali Anwar & Mudasir Hussain & Muhammad Zeshan Akber & Mustesin Ali Khan & Aatif Ali Khan, 2023. "Sustainability-Oriented Optimization and Decision Making of Community Buildings under Seismic Hazard," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    6. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Sotirios A. Argyroudis & Stavroula Fotopoulou & Stella Karafagka & Kyriazis Pitilakis & Jacopo Selva & Ernesto Salzano & Anna Basco & Helen Crowley & Daniela Rodrigues & José P. Matos & Anton J. Schle, 2020. "A risk-based multi-level stress test methodology: application to six critical non-nuclear infrastructures in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 595-633, January.
    8. Anže Babič & Matjaž Dolšek & Jure Žižmond, 2021. "Simulating Historical Earthquakes in Existing Cities for Fostering Design of Resilient and Sustainable Communities: The Ljubljana Case," Sustainability, MDPI, vol. 13(14), pages 1-21, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:eartha:e9wsu. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://eartharxiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.