IDEAS home Printed from https://ideas.repec.org/p/osf/agrixi/qmd3y.html
   My bibliography  Save this paper

Writing Research Articles for Publication

Author

Listed:
  • Ngo-Hoang, Dai-Long

Abstract

‘Ethics’ is a branch of philosophy which examines the concepts of right and wrong. A journal will likely refuse to publish research, or writing, which they feel are not to an acceptable ethical standard. Ethics in science publishing refers to both the experiment and the written account. In terms of the experiment, publishers want to know that the researcher did not mistreat animals or human beings during the course of the study. Further to this, the writing is expected to be a truthful and honest account of the experiment. Finally, authors are expected to uphold a high standard of ethics by abstaining from any form of plagiarism. Interestingly, the United States National Academies begins their third edition of On Being a Scientist: A Guide to Responsible Conduct in Research with the statement, “The scientific enterprise is built on a foundation of trust” (2009). Not factual information, but trust that the information is indeed factual.

Suggested Citation

  • Ngo-Hoang, Dai-Long, 2019. "Writing Research Articles for Publication," AgriXiv qmd3y, Center for Open Science.
  • Handle: RePEc:osf:agrixi:qmd3y
    DOI: 10.31219/osf.io/qmd3y
    as

    Download full text from publisher

    File URL: https://osf.io/download/5cdec7498d6e05001b5940cb/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qmd3y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    2. Shivakoti, Ganesh P. & Bastakoti, Ram C., 2006. "The robustness of Montane irrigation systems of Thailand in a dynamic human–water resources interface," Journal of Institutional Economics, Cambridge University Press, vol. 2(2), pages 227-247, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krister Andersson, 2008. "Motivation to Engage in Social Learning about Sustainability: An Institutional Analysis," CID Working Papers 26, Center for International Development at Harvard University.
    2. Hosein Sheibani & Hosein Alizadeh & Mojtaba Shourian, 2019. "Optimum Design and Operation of a Reservoir and Irrigation Network Considering Uncertainty of Hydrologic, Agronomic and Economic Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 863-879, January.
    3. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    4. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    5. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    6. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    7. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    8. Benya Suntaranont & Somrawee Aramkul & Manop Kaewmoracharoen & Paskorn Champrasert, 2020. "Water Irrigation Decision Support System for Practical Weir Adjustment Using Artificial Intelligence and Machine Learning Techniques," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    9. Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Xintian Ma & Xiangyi Wang & Yingbin He & Yan Zha & Huicong Chen & Shengnan Han, 2023. "Variability in Estimating Crop Model Genotypic Parameters: The Impact of Different Sampling Methods and Sizes," Agriculture, MDPI, vol. 13(12), pages 1-16, November.
    11. Hassan-Esfahani, Leila & Torres-Rua, Alfonso & McKee, Mac, 2015. "Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data," Agricultural Water Management, Elsevier, vol. 153(C), pages 42-50.
    12. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    13. Pinto, Victor Meriguetti & Reichardt, Klaus & van Dam, Jos & Lier, Quirijn de Jong van & Bruno, Isabeli Pereira & Durigon, Angelica & Dourado-Neto, Durval & Bortolotto, Rafael Pivotto, 2015. "Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna," Agricultural Water Management, Elsevier, vol. 148(C), pages 130-140.
    14. Chen, Serena H. & Jakeman, Anthony J. & Norton, John P., 2008. "Artificial Intelligence techniques: An introduction to their use for modelling environmental systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 379-400.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:agrixi:qmd3y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://agrixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.