IDEAS home Printed from https://ideas.repec.org/p/opt/doctra/41.html
   My bibliography  Save this paper

Internet móvil: ¿Sustituto del fijo?

Author

Listed:
  • Manuel Gavilano

    (OSIPTEL, Dirección de Politicas Regulatorias y Competencia)

  • Paulo Chahuara

    (OSIPTEL, Dirección de Politicas Regulatorias y Competencia)

Abstract

El objetivo del presente documento es analizar la interrelación entre las demandas de acceso o contratación del servicio de Internet fijo y móvil por parte de los hogares peruanos, en particular, del efecto de la contratación del Internet móvil sobre el acceso a Internet fijo. El trabajo se realizó con base a un modelo Probit bivariado aplicado sobre la muestra de hogares disponibles en la Encuesta Residencial de Servicios de Telecomunicaciones (ERESTEL); y, regresiones lineales (desde el enfoque clásico y bayesiano) y modelos VAR sobre series de tiempo construidas a partir de la información periódica que remiten las empresas operadoras al OSIPTEL. Los resultados del análisis muestran empíricamente la existencia de una relación de complementariedad o irrelevancia de la sustitución del Internet fijo por el móvil. No obstante, es necesario considerar que a futuro, con el despliegue de tecnologías mucho más avanzadas como las redes 5G, podrían ocurrir cambios estructurales que deriven en una situación donde los consumidores relacionen ambos tipos de acceso a Internet en la forma de sustitución, con lo cual resulta importante la actualización de los resultados encontrados.

Suggested Citation

  • Manuel Gavilano & Paulo Chahuara, 2020. "Internet móvil: ¿Sustituto del fijo?," Documentos de Trabajo 41, OSIPTEL.
  • Handle: RePEc:opt:doctra:41
    as

    Download full text from publisher

    File URL: https://serviciosweb.osiptel.gob.pe/ArchivosDPRC/Docs_RePEc/opt/DocumentosTrabajo/DT41_GavilanoChahuara-2020.pdf
    File Function: Primera version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Manuel Garcia & Pamela Medina & Luis Bendezu, 2011. "Determinantes de la Demanda del Servicio de Internet en la Vivienda y el Rol de la Adquisicion de PC's como Limitante del Acceso," Documentos de Trabajo 11, OSIPTEL.
    2. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    3. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    4. Srinuan, Pratompong & Srinuan, Chalita & Bohlin, Erik, 2012. "Fixed and mobile broadband substitution in Sweden," Telecommunications Policy, Elsevier, vol. 36(3), pages 237-251.
    5. Deaton,Angus & Muellbauer,John, 1980. "Economics and Consumer Behavior," Cambridge Books, Cambridge University Press, number 9780521296762, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    2. Nelson Manolo Chávez Munoz, Omaira Dayana Velázquez Mantilla, Mauricio Alejandro Mateus Tovar, 2011. "Cambios estructurales en la participación laboral en Colombia desde 1984 - 2008: un análisis econométrico del mercado laboral urbano para la generación de políticas de empleo," Revista CIFE, Universidad Santo Tomás, June.
    3. Teklewold, Hailemariam, 2011. "Farming or burning? shadow prices and farmer’s impatience on the allocation of multi-purpose resource in the mixed farming system of Ethiopia," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116080, European Association of Agricultural Economists.
    4. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    5. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    6. Victor Aguirregabiria, 2006. "Another Look at the Identification of Dynamic Discrete Decision Processes: With an Application to Retirement Behavior," 2006 Meeting Papers 169, Society for Economic Dynamics.
    7. J. K. Pappalardo, 2022. "Economics of Consumer Protection: Contributions and Challenges in Estimating Consumer Injury and Evaluating Consumer Protection Policy," Journal of Consumer Policy, Springer, vol. 45(2), pages 201-238, June.
    8. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    9. Rajeev K. Goel & Shoji Haruna, 2021. "Unmasking the demand for masks: Analytics of mandating coronavirus masks," Metroeconomica, Wiley Blackwell, vol. 72(3), pages 580-591, July.
    10. Angela Daley & Thesia I. Garner & Shelley Phipps & Eva Sierminska, 2020. "Differences across Place and Time in Household Expenditure Patterns: Implications for the Estimation of Equivalence Scales," Economic Working Papers 520, Bureau of Labor Statistics.
    11. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    12. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    13. Lee, Jonq-Ying & Brown, Mark G. & Schwartz, Brooke, 1986. "The Demand For National Brand And Private Label Frozen Concentrated Orange Juice: A Switching Regression Analysis," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 11(1), pages 1-7, July.
    14. Tobias Salz & Emanuel Vespa, 2020. "Estimating dynamic games of oligopolistic competition: an experimental investigation," RAND Journal of Economics, RAND Corporation, vol. 51(2), pages 447-469, June.
    15. Marie-Estelle Binet, 2013. "The Linear Expenditure System and the Demand for Municipal Public Services: The Median Voter Specification Revisited," Urban Studies, Urban Studies Journal Limited, vol. 50(9), pages 1689-1703, July.
    16. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    17. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    18. Redding, Stephen J. & Weinstein, David E., 2016. "A unified approach to estimating demand and welfare," LSE Research Online Documents on Economics 67681, London School of Economics and Political Science, LSE Library.
    19. Richard Chisik & Nazanin Behzadan & Harun Onder & Apurva Sanghi, 2016. "Aid, Remittances, the Dutch Disease, Refugees, and Kenya," Working Papers 062, Toronto Metropolitan University, Department of Economics.
    20. Grzybowski, Lukasz & Hasbi, Maude & Liang, Julienne, 2018. "Transition from copper to fiber broadband: The role of connection speed and switching costs," Information Economics and Policy, Elsevier, vol. 42(C), pages 1-10.

    More about this item

    Keywords

    Interrelación; Probit bivariado; VAR estructural; Regresión bayesiana.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:opt:doctra:41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paulo Roberto Chahuara Vargas (email available below). General contact details of provider: https://edirc.repec.org/data/ospgvpe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.