IDEAS home Printed from https://ideas.repec.org/p/oec/comaaa/5-en.html
   My bibliography  Save this paper

Common guideposts to promote interoperability in AI risk management

Author

Listed:
  • OECD

Abstract

The OECD AI Principles call for AI actors to be accountable for the proper functioning of their AI systems in accordance with their role, context, and ability to act. Likewise, the OECD Guidelines for Multinational Enterprises aim to minimise adverse impacts that may be associated with an enterprise’s operations, products and services. To develop ‘trustworthy’ and ‘responsible’ AI systems, there is a need to identify and manage AI risks. As calls for the development of accountability mechanisms and risk management frameworks continue to grow, interoperability would enhance efficiency and reduce enforcement and compliance costs. This report provides an analysis of the commonalities of AI risk management frameworks. It demonstrates that, while some elements may sometimes differ, all the risk management frameworks analysed follow a similar and sometimes functionally equivalent risk management process.

Suggested Citation

  • Oecd, 2023. "Common guideposts to promote interoperability in AI risk management," OECD Artificial Intelligence Papers 5, OECD Publishing.
  • Handle: RePEc:oec:comaaa:5-en
    DOI: 10.1787/ba602d18-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/ba602d18-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/ba602d18-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:comaaa:5-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/paoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.