IDEAS home Printed from https://ideas.repec.org/p/oec/comaaa/33-en.html
   My bibliography  Save this paper

Intellectual property issues in artificial intelligence trained on scraped data

Author

Listed:
  • OECD

Abstract

Recent technological advances in artificial intelligence (AI), especially the rise of generative AI, have raised questions regarding the intellectual property (IP) landscape. As the demand for AI training data surges, certain data collection methods give rise to concerns about the protection of IP and other rights. This report provides an overview of key issues at the intersection of AI and some IP rights. It aims to facilitate a greater understanding of data scraping — a primary method for obtaining AI training data needed to develop many large language models. It analyses data scraping techniques, identifies key stakeholders, and worldwide legal and regulatory responses. Finally, it offers preliminary considerations and potential policy approaches to help guide policymakers in navigating these issues, ensuring that AI’s innovative potential is unleashed while protecting IP and other rights.

Suggested Citation

  • Oecd, 2025. "Intellectual property issues in artificial intelligence trained on scraped data," OECD Artificial Intelligence Papers 33, OECD Publishing.
  • Handle: RePEc:oec:comaaa:33-en
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:comaaa:33-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/paoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.