IDEAS home Printed from https://ideas.repec.org/p/nsr/niesrd/320.html
   My bibliography  Save this paper

Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness

Author

Listed:
  • Dr. James Mitchell

Abstract

In a recent article Gneiting, Balabdaoui and Raftery (JRSSB, 2007) propose the criterion of sharpness for the evaluation of predictive distributions or density forecasts. They motivate their proposal by an example in which standard evaluation procedures based on probability integral transforms cannot distinguish between the ideal forecast and several competing forecasts. In this paper we show that their example has some unrealistic features from the perspective of the time-series forecasting literature, hence it is an insecure foundation for their argument that existing calibration procedures are inadequate in practice. We present an alternative, more realistic example in which relevant statistical methods, including information-based methods, provide the required discrimination between competing forecasts. We conclude that there is no need for a subsidiary criterion of sharpness.

Suggested Citation

  • Dr. James Mitchell, 2008. "Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness," National Institute of Economic and Social Research (NIESR) Discussion Papers 320, National Institute of Economic and Social Research.
  • Handle: RePEc:nsr:niesrd:320
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John W. Galbraith & Simon van Norden, 2009. "Calibration and Resolution Diagnostics for Bank of England Density Forecasts," CIRANO Working Papers 2009s-36, CIRANO.
    2. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    3. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    4. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    5. Tsyplakov, Alexander, 2011. "Evaluating density forecasts: a comment," MPRA Paper 31184, University Library of Munich, Germany.
    6. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    7. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Geoff Kenny & Thomas Kostka & Federico Masera, 2014. "How Informative are the Subjective Density Forecasts of Macroeconomists?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 163-185, April.
    9. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:niesrd:320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library & Information Manager (email available below). General contact details of provider: https://edirc.repec.org/data/niesruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.