IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/17557.html
   My bibliography  Save this paper

Identifying Demand with Multidimensional Unobservables: A Random Functions Approach

Author

Listed:
  • Jeremy T. Fox
  • Amit Gandhi

Abstract

We explore the identification of nonseparable models without relying on the property that the model can be inverted in the econometric unobservables. In particular, we allow for infinite dimensional unobservables. In the context of a demand system, this allows each product to have multiple unobservables. We identify the distribution of demand both unconditional and conditional on market observables, which allows us to identify several quantities of economic interest such as the (conditional and unconditional) distributions of elasticities and the distribution of price effects following a merger. Our approach is based on a significant generalization of the linear in random coefficients model that only restricts the random functions to be analytic in the endogenous variables, which is satisfied by several standard demand models used in practice. We assume an (unknown) countable support for the the distribution of the infinite dimensional unobservables.

Suggested Citation

  • Jeremy T. Fox & Amit Gandhi, 2011. "Identifying Demand with Multidimensional Unobservables: A Random Functions Approach," NBER Working Papers 17557, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:17557
    Note: IO TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w17557.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    2. Richard Blundell & Rosa Matzkin, 2010. "Conditions for the existence of control functions in nonseparable simultaneous equations models," CeMMAP working papers CWP28/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    4. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(3), pages 804-837, June.
    5. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    6. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    7. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    8. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    9. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    10. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    11. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galasso, Alberto & Mitchell, Matthew & Virag, Gabor, 2016. "Market outcomes and dynamic patent buyouts," International Journal of Industrial Organization, Elsevier, vol. 48(C), pages 207-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    2. Maximilian Kasy, 2014. "Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(4), pages 1614-1636.
    3. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
    4. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    5. Hoderlein, Stefan, 2011. "How many consumers are rational?," Journal of Econometrics, Elsevier, vol. 164(2), pages 294-309, October.
    6. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    7. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    8. Steven T. Berry & Philip A. Haile, 2011. "Identification in a Class of Nonparametric Simultaneous Equations Models," Cowles Foundation Discussion Papers 1787R2, Cowles Foundation for Research in Economics, Yale University, revised Nov 2013.
    9. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    10. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    11. Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
    12. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    13. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.
    14. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    15. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    16. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    17. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    18. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome conditioned treatment effects," CeMMAP working papers CWP39/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    20. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • L0 - Industrial Organization - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:17557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.