IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2023-18.html
   My bibliography  Save this paper

Solving the Forecast Combination Puzzle

Author

Listed:
  • David T. Frazier
  • Ryan Covey
  • Gael M. Martin
  • Donald S. Poskitt

Abstract

The forecast combination puzzle is the commonly encountered empirical result whereby predictions formed by combining multiple forecasts in complex ways do not out-perform more naive, e.g. equally-weighted, approaches. While various solutions for the cause of the puzzle exist in the literature, these solutions are limited in their scope and applicability. In contrast, we demonstrate a general solution to the puzzle by showing that this phenomenon is a direct consequence of the methodology used to produce forecast combinations. In particular, we show that tests which aim to discriminate between the predictive accuracy of competing forecast combination strategies have low power, and can lack size control, leading to an outcome that favours the naive approach. In addition, we demonstrate that the low power of such predictive accuracy tests in the forecast combination setting can be completely avoided if more efficient strategies are used in the production of the combinations. We illustrate these findings both in the context of forecasting a functional of interest and in terms of predictive densities. A short empirical example using daily financial returns exemplifies how researchers can avoid the puzzle in practical settings.

Suggested Citation

  • David T. Frazier & Ryan Covey & Gael M. Martin & Donald S. Poskitt, 2023. "Solving the Forecast Combination Puzzle," Monash Econometrics and Business Statistics Working Papers 18/23, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2023-18
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/2023/wp18-2023.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    2. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024. "Flexible global forecast combinations," Omega, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2019. "Robust optimization of forecast combinations," International Journal of Forecasting, Elsevier, vol. 35(3), pages 910-926.
    2. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    3. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    4. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    5. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    6. Edward L. Glaeser & Joseph Gyourko, 2006. "Housing Dynamics," NBER Working Papers 12787, National Bureau of Economic Research, Inc.
    7. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    8. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    9. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    10. Iglesias Emma M., 2011. "Constrained k-class Estimators in the Presence of Weak Instruments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-13, September.
    11. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    12. Ekaterina Oparina & Sorawoot Srisuma, 2022. "Analyzing Subjective Well-Being Data with Misclassification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 730-743, April.
    13. Sauer, J., 2007. "Monotonicity and Curvature – A Bootstrapping Approach," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    14. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    15. Zhu, Hongtu & Zhang, Heping, 2006. "Asymptotics for estimation and testing procedures under loss of identifiability," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 19-45, January.
    16. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    17. Ben, Youhong & Jiang, Feiyu, 2020. "A note on Portmanteau tests for conditional heteroscedastistic models," Economics Letters, Elsevier, vol. 192(C).
    18. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    19. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    20. Julio A. Crego & Julio Gálvez, 2021. "Brexit: Cyclical dependence in market neutral hedge funds," Working Papers 2141, Banco de España.

    More about this item

    Keywords

    optimal forecast combinations; tests for forecast accuracy; probabilistic forecasting; scoring rules; SℰP500 forecasting; one-step versus two-step estimation;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2023-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.