IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/11019.html
   My bibliography  Save this paper

Detrending Persistent Predictors

Author

Abstract

Researchers in finance very often rely on highly persistent Ñ nearly integrated Ñ explanatory variables to predict returns. This paper proposes to stand up to the usual problem of persistent regressor bias, by detrending the highly auto-correlated predictors. We find that the statistical evidence of out-of-sample predictability of stock returns is stronger, once predictors are adjusted for high persistence

Suggested Citation

  • Christophe Boucher & Bertrand Maillet, 2011. "Detrending Persistent Predictors," Documents de travail du Centre d'Economie de la Sorbonne 11019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:11019
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2011/11019.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coudert, Virginie & Mignon, Valérie, 2013. "The “forward premium puzzle” and the sovereign default risk," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 491-511.
    2. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    3. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.
    4. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    5. Clark, Todd E. & McCracken, Michael W., 2012. "In-sample tests of predictive ability: A new approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
    6. Dunbar, Kwamie, 2021. "Pricing the hedging factor in the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    7. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 1-21, February.
    8. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    9. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    10. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    11. Jiang, Xiaoquan & Lee, Bong-Soo, 2007. "Stock returns, dividend yield, and book-to-market ratio," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 455-475, February.
    12. Mark E. Wohar & David E. Rapach, 2005. "Valuation ratios and long-horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    15. Chen, Long & Petkova, Ralitsa & Zhang, Lu, 2008. "The expected value premium," Journal of Financial Economics, Elsevier, vol. 87(2), pages 269-280, February.
    16. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    17. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    18. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    19. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    20. Zakamulin, Valeriy & Giner, Javier, 2022. "Time series momentum in the US stock market: Empirical evidence and theoretical analysis," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Keywords

    Forecasting; persistence; detrending; expected returns;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:11019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.