IDEAS home Printed from https://ideas.repec.org/p/mon/ceddtr/112.html
   My bibliography  Save this paper

Prévalence du VIH et pauvreté en Afrique : Evidence micro et macro-économétrique appliquée au Burkina Faso

Author

Listed:
  • Jean-Pierre Lachaud

    (GED, Université Montesquieu-Bordeaux IV)

Abstract

Fondée sur les données des enquêtes démographique et de santé, et des conditions de vie des ménages, effectuées en 2003, la présente étude, examinant les facteurs de la prévalence du VIH au Burkina Faso, conduit à deux conclusions. Premièrement, la lutte contre la pauvreté n’est pas nécessairement un moyen de réduire en même temps de manière drastique la prévalence du VIH/SIDA, une assertion basée sur plusieurs éléments d’analyse empirique. Tout d’abord, la courbe de concentration, appréhendant l’inégalité « socio-économique » de la seroprévalence, est « pro-pauvres ». Ensuite, les estimations micro-économétriques des modèles probit suggèrent une relation positive entre la prévalence du VIH des femmes et des hommes adultes, et le niveau de vie des individus. En même temps, les modèles probit mettent en évidence une probabilité de prévalence du VIH croissante avec : (i) l’âge, et ; (ii) la localisation à Ouagadougou, la capitale, et dans la quasi-totalité des régions de l’ouest et du sud-ouest du pays, par rapport aux autres zones. Par contre, l’utilisation des condoms lors des rapports sexuels réduit les chances de séroprévalence, un effet croissant avec la richesse des ménages. Enfin, l’approche macro-économétrique révèle l’existence d’une relation positive (négative) entre, d’une part, le niveau de la prévalence régionale du VIH, et, d’autre part, le niveau de vie monétaire moyen provincial (la pauvreté) des ménages. En même temps, la relation entre la prévalence du VIH et la pauvreté, appréhendée au niveau régional, n’est pas linéaire. En outre, l’estimation des modèles d’économétrie spatiale montre un impact de la crise ivoirienne sur la prévalence du VIH en Burkina Faso, consécutivement au retour massif des migrants burkinabè de Côte d’Ivoire – notamment, à partir de 2000 –, pays où la séroprévalence est, en moyenne, cinq fois plus élevée qu’au Burkina Faso. Deuxièmement, et corrélativement, la relation entre la prévalence du VIH et la pauvreté est questionnée. Tout d’abord, des facteurs structurels pourraient contribuer à biaiser la relation entre les ressources des ménages et la prévalence du VIH/SIDA. D’une part, la persistance de facteurs cognitifs et comportementaux inhérents à la société traditionnelle, malgré le rythme élevé de croissance économique par tête qui a prévalu au cours des deux dernières décennies. En particulier, la construction sociale des attributs et des rôles féminins confère aux hommes un statut de « decision-makers » en ce qui concerne les relations sexuelles, tandis que la persistance des croyances séculaires contribue à minimiser la perception du VIH/SIDA en termes de risques, indépendamment du niveau de vie. D’autre part, les deux sous-ensembles géographiques où la prévalence du VIH est plus élevée que la moyenne nationale, tendent à exhiber des moyennes régionales des dépenses par tête plus élevées, comparativement aux autres zones. Par ailleurs, l’enclavement du Burkina Faso a exigé un développement du trafic routier et ferroviaire avec les pays limitrophes, notamment la Côte d’Ivoire. De ce fait, il se peut que les conditions structurelles du processus de développement burkinabè, concomitantes avec d’importants flux d’échange de biens, de services et de main-d’oeuvre avec un pays où la prévalence du VIH est particulièrement élevée, constituent un élément d’explication de la relation positive entre les ressources des ménages et la séroprévalence. Ensuite, des facteurs conjoncturels ont probablement contribué à renforcer la relation inverse entre la prévalence du VIH et la pauvreté, l’analyse macro-économétrique mettant en évidence une relation directe entre le retour massif des migrants de Côte d’ivoire et le niveau de prévalence du VIH au Burkina Faso. Based on the data of the Demographic and Health Survey, and of the Household Priority Survey, carried out in 2003, the present study, examining the factors of the HIV prevalence in Burkina Faso, provides two conclusions. Firstly, the fight against poverty is not necessarily a means of reducing at the same time in a drastic way the HIV/AIDS prevalence, an assertion based on several elements of empirical analysis. First of all, the concentration curve, measuring the « socioeconomic » inequality of the seroprevalence, is « pro-poor ». Then, the micro-econometric estimates of the probit models suggest a positive relation between the HIV prevalence of the adult women and men, and the standard of living of the individuals. At the same time, the probit models highlight a probability of HIV prevalence increasing with : (i) the age, and ; (ii) the localization in Ouagadougou, the capital, and in the majority of the areas of the west and south-west of the country, compared to the other zones. On the other hand, the sexual relations with condoms reduce the chances of seroprevalence, an effect growing with the wealth of the households. Lastly, the macro-econometric approach reveals the existence of a positive (negative) relation between, on the one hand, the level of the regional HIV prevalence, and, on the other hand, the average monetary provincial standard of living (the poverty) of the households. At the same time, the relation between the HIV prevalence and the poverty, apprehended at the regional level, is not linear. Moreover, the estimate of the spatial econometrics models indicates an impact of the crisis of Côte d’Ivoire on the HIV prevalence in Burkina Faso, consecutively with the massive return of a large number of refugees, displaced or repatriated persons originating from Côte d’Ivoire – in particular, since 2000 –, country where the seroprevalence is, on average, five times higher than in Burkina Faso. Secondly, and correlatively, the relation between the HIV prevalence and poverty is questioned. First of all, some structural factors could contribute to skew the relation between the resources of the households and the prevalence of the HIV/AIDS. On the one hand, the persistence of cognitive and behavioral factors inherent to the traditional society, in spite of the high rate of economic growth per capita which prevailed during two last decades. In particular, the social construction of the female attributes and roles confers to men a statute of « decision-makers » with regard to the sexual intercourse, while the persistence of the secular beliefs contributes to minimize the perception of the HIV/SIDA in terms of risks, independently of the standard of living. In addition, the two geographical subsets where the HIV prevalence is higher than the national average, tend to have higher regional averages per capita expenditure, compared to the other zones. In addition, the enclavement of Burkina Faso required a development of the road and railway traffic with the countries bordering, in particular Côte d’Ivoire. So, it may be that the structural conditions of the process of development of Burkina Faso, concomitant with significant flows of exchange of goods, services and labour with a country where the prevalence of the HIV is particularly high, constitute an element of explanation of the positive relation between the resources of the households and the HIV seroprevalence. Then, factors related to the conjuncture probably contributed to reinforce the opposite relation between the HIV seroprevalence and poverty, the macro-econometric analysis highlighting a direct relation between the massive return of the migrants of Côte d'Ivoire and the level of HIV prevalence in Burkina Faso. (Full text in french)

Suggested Citation

  • Jean-Pierre Lachaud, 2005. "Prévalence du VIH et pauvreté en Afrique : Evidence micro et macro-économétrique appliquée au Burkina Faso," Documents de travail 112, Groupe d'Economie du Développement de l'Université Montesquieu Bordeaux IV.
  • Handle: RePEc:mon:ceddtr:112
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Eric Neumayer, 2004. "HIV/AIDS and its impact on convergence in life expectancy, infant and child survival rates," HEW 0405001, University Library of Munich, Germany.
    2. David Bloom & David Canning, 2003. "The Health and Poverty of Nations: From theory to practice," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 4(1), pages 47-71.
    3. Jean-Paul Moatti & Benjamin Coriat & Yves Souteyrand & Tony Barnett & Jérôme Dumoulin & Yves-Antoine Flori, 2003. "Economics of AIDS and access to HIV/AIDS care in developing countries : issues and challenges," Post-Print halshs-00112023, HAL.
    4. Kakwani, Nanak & Wagstaff, Adam & van Doorslaer, Eddy, 1997. "Socioeconomic inequalities in health: Measurement, computation, and statistical inference," Journal of Econometrics, Elsevier, vol. 77(1), pages 87-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachaud, Jean-Pierre, 2007. "HIV prevalence and poverty in Africa: Micro- and macro-econometric evidences applied to Burkina Faso," Journal of Health Economics, Elsevier, vol. 26(3), pages 483-504, May.
    2. Das, Jishnu & Hammer, Jeffrey & Sánchez-Paramo, Carolina, 2012. "The impact of recall periods on reported morbidity and health seeking behavior," Journal of Development Economics, Elsevier, vol. 98(1), pages 76-88.
    3. Gerdtham, Ulf-G & Sundberg, Gun, 1996. "Measuring Income-Related Health Inequalities in Sweden," SSE/EFI Working Paper Series in Economics and Finance 120, Stockholm School of Economics.
    4. Peng Nie & Andrew E. Clarck & Conchita D'Ambrosio & Lanlin Ding, 2020. "Income-related health inequality in urban China (1991-2015): The role of homeownership and housing conditions," Working Papers 524, ECINEQ, Society for the Study of Economic Inequality.
    5. Clarke, Philip & Van Ourti, Tom, 2010. "Calculating the concentration index when income is grouped," Journal of Health Economics, Elsevier, vol. 29(1), pages 151-157, January.
    6. Antonio Abatemarco & Massimo Aria & Sergio Beraldo & Michela Collaro, 2023. "Measuring Access and Inequality of Access to Health Care: a Policy-Oriented Decomposition," CSEF Working Papers 666, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    7. Bénédicte Apouey & Jacques Silber, 2013. "Inequality and Bi-Polarization in Socioeconomic Status and Health: Ordinal Approaches," Research on Economic Inequality, in: Health and Inequality, volume 21, pages 77-109, Emerald Group Publishing Limited.
    8. Kinyondo, Abel Alfred & Ntegwa, Magashi Joseph & Masawe, Cresencia Apolinary, 2022. "Socioeconomic Inequality in Maternal Healthcare Services: The Case of Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 10(1), January.
    9. David Madden, 2018. "The Base of Party Political Support in Ireland: A New Approach," The Economic and Social Review, Economic and Social Studies, vol. 49(1), pages 17-44.
    10. William Joe & U. S. Mishra & K. Navaneetham, 2009. "Inequalities in Childhood Malnutrition in India: Some Evidence on Group Disparities," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 10(3), pages 417-439.
    11. Tavares, Lara Patrício & Zantomio, Francesca, 2017. "Inequity in healthcare use among older people after 2008: The case of southern European countries," Health Policy, Elsevier, vol. 121(10), pages 1063-1071.
    12. M. M. Fasoranti, 2015. "An Econometric Analysis of the Determinants of Government Health Expenditures in Nigeria," Journal of Empirical Economics, Research Academy of Social Sciences, vol. 4(4), pages 193-206.
    13. David (David Patrick) Madden, 2012. "The relationship between low birthweight and socioeconomic status in Ireland," Working Papers 201214, School of Economics, University College Dublin.
    14. Kenya Valeria M. S. Noronha & M™nica Viegas Andrade, 2002. "Desigualdades sociais em saúde: evidências empíricas sobre o caso brasileiro," Textos para Discussão Cedeplar-UFMG td171, Cedeplar, Universidade Federal de Minas Gerais.
    15. Hai Zhong, 2010. "The impact of missing data in the estimation of concentration index: a potential source of bias," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(3), pages 255-266, June.
    16. Satis Devkota & Mukti Upadhyay, 2013. "Agricultural Productivity and Poverty Reduction in Nepal," Review of Development Economics, Wiley Blackwell, vol. 17(4), pages 732-746, November.
    17. Stéphane Tizio, 2004. "Etat de santé et systèmes de soins dans les pays en développement : La contribution des politiques de santé au développement durable," Mondes en développement, De Boeck Université, vol. 127(3), pages 101-117.
    18. Tom Van Ourti & Philip Clarke, 2008. "The Bias of the Gini Coefficient due to Grouping," Tinbergen Institute Discussion Papers 08-095/3, Tinbergen Institute.
    19. Adam Wagstaff & Magnus Lindelow, 2014. "Are Health Shocks Different? Evidence From A Multishock Survey In Laos," Health Economics, John Wiley & Sons, Ltd., vol. 23(6), pages 706-718, June.
    20. Yongqing Dong & Quheng Deng & Shaoping Li, 2022. "The Health Inequality of Children in China: A Regression-Based Decomposition Analysis," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 15(1), pages 137-159, February.

    More about this item

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mon:ceddtr:112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.