IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/794.html
   My bibliography  Save this paper

Sample Size Requirements for Estimation in SUR Models

Author

Abstract

This paper explores sample size requirements for the estimation of SUR models by (two-stage) feasible generalized least squares, maximum likelihood and Bayesian methods. It is found that the sample size requirements presented in standard treatments of SUR models are incomplete and potentially misleading. It is also demonstrated that likelihood-based methods potentially require larger sample sizes than does the two-stage estimator considered in this paper.

Suggested Citation

  • Chotikapanich, D. & Griffiths, W.E. & Skeels, C.L., 2001. "Sample Size Requirements for Estimation in SUR Models," Department of Economics - Working Papers Series 794, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:794
    as

    Download full text from publisher

    File URL: http://www.economics.unimelb.edu.au/downloads/wpapers-00-01/794.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    2. Phillips, Peter C B, 1985. "The Exact Distribution of the SUR Estimator," Econometrica, Econometric Society, vol. 53(4), pages 745-756, July.
    3. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    4. Srivastava, V. K. & Dwivedi, T. D., 1979. "Estimation of seemingly unrelated regression equations : A brief survey," Journal of Econometrics, Elsevier, vol. 10(1), pages 15-32, April.
    5. Denzil Fiebig & Jae Kim, 2000. "Estimation and inference in sur models when the number of equations is large," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 105-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolff, Hendrik & Heckelei, Thomas & Mittelhammer, Ronald C., 2004. "Imposing Monotonicity And Curvature On Flexible Functional Forms," 2004 Annual meeting, August 1-4, Denver, CO 20256, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    3. W.E. Griffiths & Ma. Rebecca Valenzuela, 2004. "Gibbs Samplers for a Set of Seemingly Unrelated Regressions," Department of Economics - Working Papers Series 912, The University of Melbourne.
    4. Hendrik Wolff & Thomas Heckelei & Ron Mittelhammer, 2010. "Imposing Curvature and Monotonicity on Flexible Functional Forms: An Efficient Regional Approach," Computational Economics, Springer;Society for Computational Economics, vol. 36(4), pages 309-339, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    2. Alex Ilek & Tanya Suchoy & Nir Klein, 2006. "Estimating the premium implicit in the yields of Treasury Bills," Israel Economic Review, Bank of Israel, vol. 4(2), pages 53-83.
    3. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    4. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    5. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    6. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    7. Will Davis & Alexander Gordan & Rusty Tchernis, 2021. "Measuring the spatial distribution of health rankings in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2921-2936, November.
    8. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    10. Francisco Peñaranda, 2004. "Are Vector Autoregressions an Accurate Model for Dynamic Asset Allocation?," Working Papers wp2004_0419, CEMFI.
    11. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    12. E. Kohlscheen & M. P. Taylor, 2008. "International liquidity swaps: is the Chiang Mai Initiative pooling reserves efficiently?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 13(4), pages 323-332.
    13. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    14. Sylvia Kaufmann, 2002. "Is there an asymmetric effect of monetary policy over time? A Bayesian analysis using Austrian data," Empirical Economics, Springer, vol. 27(2), pages 277-297.
    15. Dueker, Michael, 2006. "Kalman filtering with truncated normal state variables for Bayesian estimation of macroeconomic models," Economics Letters, Elsevier, vol. 93(1), pages 58-62, October.
    16. Seungil Yum, 2019. "The interaction between knowledge-intensive business services and urban economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(1), pages 53-83, August.
    17. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    18. KIM, Jae-Young & PARK, Woong Yong, 2018. "Some Empirical Evidence on Models of the Fisher Relation: Post-Data Comparison," Discussion paper series HIAS-E-68, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    19. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.

    More about this item

    Keywords

    ECONOMETRIC MODELS ; ECONOMETRICS ; ESTIMATORS;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.