IDEAS home Printed from https://ideas.repec.org/p/mit/sloanp/693.html
   My bibliography  Save this paper

Solving Project Scheduling Problems by Minimum Cut

Author

Listed:
  • Moehring, Rolf
  • Uetz, Marc
  • Stork, Frederik
  • Schulz, Andreas S.

Abstract

In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in manufacturing, production planning, project management, and elsewhere. It is one of the most intractable problems in operations research, and has therefore become a popular playground for the latest optimization techniques, including virtually all local search paradigms. We show that a somewhat more classical mathematical programming approach leads to both competitive feasible solutions and strong lower bounds, within quite reasonable computation times. The basic ingredients of our approach are the Lagrangian relaxation of a time-indexed integer programming formulation and relaxation-based list scheduling, enriched with a useful idea from recent approximation algorithms for machine scheduling problems. The efficiency of the algorithm results from the insight that the relaxed problem can be solved by computing a minimum cut in an appropriately defined directed graph. Our computational study covers different types of resource-constrained project scheduling problems, based on several, notoriously hard test sets, including practical problem instances from chemical production planning.

Suggested Citation

  • Moehring, Rolf & Uetz, Marc & Stork, Frederik & Schulz, Andreas S., 2002. "Solving Project Scheduling Problems by Minimum Cut," Working papers 4231-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:693
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1721.1/693
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klein, Robert, 1999. "Computing lower bounds by destructive improvement - an application to resource-constrained project scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 10913, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Christofides, Nicos & Alvarez-Valdes, R. & Tamarit, J. M., 1987. "Project scheduling with resource constraints: A branch and bound approach," European Journal of Operational Research, Elsevier, vol. 29(3), pages 262-273, June.
    3. Rolf H. Möhring, 1984. "Minimizing Costs of Resource Requirements in Project Networks Subject to a Fixed Completion Time," Operations Research, INFORMS, vol. 32(1), pages 89-120, February.
    4. Brucker, Peter & Knust, Sigrid, 2000. "A linear programming and constraint propagation-based lower bound for the RCPSP," European Journal of Operational Research, Elsevier, vol. 127(2), pages 355-362, December.
    5. A. Kimms, 2001. "Maximizing the Net Present Value of a Project Under Resource Constraints Using a Lagrangian Relaxation Based Heuristic with Tight Upper Bounds," Annals of Operations Research, Springer, vol. 102(1), pages 221-236, February.
    6. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    7. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    8. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    9. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    10. Klein, Robert & Scholl, Armin, 1999. "Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 112(2), pages 322-346, January.
    11. Kolisch, Rainer & Schwindt, Christoph & Sprecher, Arno, 1999. "Benchmark instances for project scheduling problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Kolisch, Rainer & Sprecher, Arno, 1996. "PSPLIB - a project scheduling problem library," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 396, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Kolisch, Rainer & Hartmann, Sönke, 1999. "Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 10966, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. A Drexl & A Kimms, 2001. "Optimization guided lower and upper bounds for the resource investment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 340-351, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    2. Sophie Demassey & Christian Artigues & Philippe Michelon, 2005. "Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 52-65, February.
    3. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    4. Sönke Hartmann, 2002. "A self‐adapting genetic algorithm for project scheduling under resource constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(5), pages 433-448, August.
    5. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    6. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    7. Fleszar, Krzysztof & Hindi, Khalil S., 2004. "Solving the resource-constrained project scheduling problem by a variable neighbourhood search," European Journal of Operational Research, Elsevier, vol. 155(2), pages 402-413, June.
    8. Andrei Horbach, 2010. "A Boolean satisfiability approach to the resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 181(1), pages 89-107, December.
    9. Olivier Liess & Philippe Michelon, 2008. "A constraint programming approach for the resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 157(1), pages 25-36, January.
    10. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    11. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    12. Alexander Tesch, 2020. "A polyhedral study of event-based models for the resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 23(2), pages 233-251, April.
    13. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    14. Carlier, J. & Neron, E., 2003. "On linear lower bounds for the resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 149(2), pages 314-324, September.
    15. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    16. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    17. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    18. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    19. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    20. Sprecher, Arno, 1999. "Network decomposition techniques for resource-constrained project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 505, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: None (email available below). General contact details of provider: https://edirc.repec.org/data/ssmitus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.