IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2008-08.html
   My bibliography  Save this paper

Parameter identification for deterministic and stochastic differential equations using the "collage method" for fixed point equations

Author

Listed:
  • Vincenzo CAPASSO
  • Herb E. KUNZE
  • Davide LA TORRE
  • Edward R. VRSCAY

Abstract

A number of inverse problems may be viewed in terms of the approximation of a target element x in a complete metric space (X,d) by the fixed point x* of a contraction function T : X -> X. In practice, from a family of contraction functions T(a) one wishes to find the parameter a for which the approximation error d(x,x*(a)) is as small as possible. Thanks to a simple consequence of Banach's fixed point theorem known as the Collage Theorem, most practical methods of solving the inverse problem for fixed point equations seek to find an operator T(a) for which the so called collage distance d(x,T(a)x) is as small as possible. We first show how to solve inverse problems for deterministic and random differential equations and then we switch to the analysis of stochastic differential equations. Here inverse problems can be solved by minimizing the collage distance in an appropriate metric space. At the end we show an application of this approach to a system of coupled stochastic differential equations which describes the interaction between particles in a physical system

Suggested Citation

  • Vincenzo CAPASSO & Herb E. KUNZE & Davide LA TORRE & Edward R. VRSCAY, 2008. "Parameter identification for deterministic and stochastic differential equations using the "collage method" for fixed point equations," Departmental Working Papers 2008-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2008-08
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2008/DEMM-2008_008wp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herb E. KUNZE & Davide LA TORRE & Edward R. VRSCAY, 2008. "From iterated function systems to iterated multifunction systems," Departmental Working Papers 2008-39, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    2. Davide La Torre & Herb Kunze & Edward Vrscay, 2006. "Random fixed point equations and inverse problems by collage theorem," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1030, Universitá degli Studi di Milano.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto BUCCI & Herb E. KUNZE & Davide LA TORRE, 2008. "Parameter identification, population and economic growth in an extended Lucas and Uzawa-type two sector model," Departmental Working Papers 2008-34, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    2. Bucci, Alberto & Florio, Massimo & La Torre, Davide, 2012. "Government spending and growth in second-best economies," Economic Modelling, Elsevier, vol. 29(3), pages 654-663.
    3. Davide LA TORRE & Edward R. VRSCAY, 2008. "A generalized fractal transform for measure-valued images," Departmental Working Papers 2008-38, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    4. Prithvi, B.V. & Katiyar, S.K., 2023. "Revisiting fractal through nonconventional iterated function systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2015. "Self-similar measures in multi-sector endogenous growth models," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 40-56.
    6. Andres, Jan & Rypka, Miroslav, 2013. "Dimension of hyperfractals," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 146-154.
    7. Miculescu, Radu & Mihail, Alexandru & Urziceanu, Silviu-Aurelian, 2020. "Contractive affine generalized iterated function systems which are topologically contracting," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Prithvi, B.V. & Katiyar, S.K., 2022. "Interpolative operators: Fractal to multivalued fractal," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2008-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.