IDEAS home Printed from https://ideas.repec.org/p/uto/dipeco/201509.html
   My bibliography  Save this paper

Self-Similar Measures in Multi-Sector Endogenous Growth Models

Author

Listed:

Abstract

We analyze two types of stochastic discrete time multi-sector endogenous growth models, namely a basic Lucas-Uzawa (1988) model and an extended three-sector version as in La Torre and Marsiglio (2010). As in the case of sustained growth the optimal dynamics of the state variables are not stationary, we focus on the dynamics of the capital ratio variables, and we show that, through appropriate log-transform ations, they can be converted into affine iterated function systems converging to an invariant distribution supported on some fractal set. This proves that also the steady state of endogenous growth models i.e., the stochastic balanced growth path equilibrium—might have a fractal nature. We also provide some sufficient conditions under which the associated self-similar measures turn out to be either singular or absolutely continuous (for the three-sector model we only consider the singularity).

Suggested Citation

  • Davide La Torre & Simone, Marsiglio & Mendivil, Franklin & Privileggi, Fabio, 2015. "Self-Similar Measures in Multi-Sector Endogenous Growth Models," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201509, University of Turin.
  • Handle: RePEc:uto:dipeco:201509
    as

    Download full text from publisher

    File URL: http://www.est.unito.it/do/home.pl/Download?doc=/allegati/wp2015dip/wp_9_2015.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mitra, Tapan & Privileggi, Fabio, 2006. "Cantor type attractors in stochastic growth models," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 626-637.
    2. Gardini, Laura & Hommes, Cars & Tramontana, Fabio & de Vilder, Robin, 2009. "Forward and backward dynamics in implicitly defined overlapping generations models," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 110-129, August.
    3. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    4. Mitra, Tapan & Privileggi, Fabio, 2003. "Cantor Type Invariant Distributions in the Theory of Optimal Growth under Uncertainty," Working Papers 03-09, Cornell University, Center for Analytic Economics.
    5. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    6. Davide La Torre & Herb Kunze & Ed Vrscay, 2006. "Contractive multifunctions, fixed point inclusions and iterated multifunction systems," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1025, Universitá degli Studi di Milano.
    7. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    8. Dirk Bethmann, 2013. "Solving Macroeconomic Models with Homogeneous Technology and Logarithmic Preferences," Australian Economic Papers, Wiley Blackwell, vol. 52(1), pages 1-18, March.
    9. Simone Marsiglio, 2012. "Economic Growth: Technical Progress, Population Dynamics and Sustainability," Rivista italiana degli economisti, Società editrice il Mulino, issue 1, pages 151-158.
    10. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    11. La Torre, Davide & Marsiglio, Simone & Privileggi, Fabio, 2011. "Fractals and Self-Similarity in Economics: the Case of a Stochastic Two-Sector Growth Model," POLIS Working Papers 157, Institute of Public Policy and Public Choice - POLIS.
    12. Ben S. Bernanke & Refet S. Gürkaynak, 2002. "Is Growth Exogenous? Taking Mankiw, Romer, and Weil Seriously," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 11-72, National Bureau of Economic Research, Inc.
    13. Davide LA TORRE & Franklin MENDIVIL, 2007. "Iterated function systems on multifunctions and inverse problems," Departmental Working Papers 2007-32, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    14. Davide LA TORRE & Edward R. VRSCAY, 2008. "A generalized fractal transform for measure-valued images," Departmental Working Papers 2008-38, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    15. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    16. Kazuo Nishimura & Makoto Yano, 2012. "Non-linear Dynamics and Chaos in Optimal Growth: An Example," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 127-150, Springer.
    17. La Torre, Davide & Marsiglio, Simone, 2010. "Endogenous technological progress in a multi-sector growth model," Economic Modelling, Elsevier, vol. 27(5), pages 1017-1028, September.
    18. L. Montrucchio & F. Privileggi, 1999. "Fractal steady states instochastic optimal control models," Annals of Operations Research, Springer, vol. 88(0), pages 183-197, January.
    19. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    20. Nishimura Kazuo & Sorger Gerhard, 1996. "Optimal Cycles and Chaos: A Survey," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    21. Stefano Maria Iacus & Davide La Torre, 2002. "Approximating distribution functions by iterated function systems," Departmental Working Papers 2002-03, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    22. Dirk Bethmann, 2007. "A Closed-form Solution of the Uzawa-Lucas Model of Endogenous Growth," Journal of Economics, Springer, vol. 90(1), pages 87-107, January.
    23. Mitra, Tapan & Privileggi, Fabio, 2009. "On Lipschitz continuity of the iterated function system in a stochastic optimal growth model," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 185-198, January.
    24. Boldrin, Michele & Montrucchio, Luigi, 1986. "On the indeterminacy of capital accumulation paths," Journal of Economic Theory, Elsevier, vol. 40(1), pages 26-39, October.
    25. Herb E. KUNZE & Davide LA TORRE & Edward R. VRSCAY, 2008. "From iterated function systems to iterated multifunction systems," Departmental Working Papers 2008-39, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    26. Davide LA TORRE & Edward R. VRSCAY & Mehran EBRAHIMI & Michael F. BARNSLEY, 2008. "Measure-valued images, associated fractal transforms and the affine self-similarity of images," Departmental Working Papers 2008-45, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    27. Tapan Mitra & Luigi Montrucchio & Fabio Privileggi, 2003. "The nature of the steady state in models of optimal growth under uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 39-71, December.
    28. Niu, M. & Xi, L.-F., 2007. "Singularity of a class of self-similar measures," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 376-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2020. "Public Debt Dynamics under Ambiguity by Means of Iterated Function Systems on Density Functions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202009, University of Turin.
    2. Simone Marsiglio & Privileggi, Fabio, 2020. "Three Dimensional Fractal Attractors in a Green Transition Economic Growth Model," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202019, University of Turin.
    3. La Torre, Davide & Marsiglio, Simone & Privileggi, Fabio, 2018. "Fractal Attractors in Economic Growth Models with Random Pollution Externalities," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201801, University of Turin.
    4. Torre, Davide La & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2019. "A stochastic economic growth model with health capital and state-dependent probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 81-93.
    5. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2016. "Fractal Attractors and Singular Invariant Measures in Two-Sector Growth Models with Random Factor Shares," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201620, University of Turin.
    6. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2021. "Generalized Fractal Transforms with Condensation: a Macroeconomic-Epidemiological Application," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202107, University of Turin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Torre, Davide & Marsiglio, Simone & Privileggi, Fabio, 2011. "Fractals and Self-Similarity in Economics: the Case of a Stochastic Two-Sector Growth Model," POLIS Working Papers 157, Institute of Public Policy and Public Choice - POLIS.
    2. Simone Marsiglio & Privileggi, Fabio, 2020. "Three Dimensional Fractal Attractors in a Green Transition Economic Growth Model," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202019, University of Turin.
    3. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2016. "Fractal Attractors and Singular Invariant Measures in Two-Sector Growth Models with Random Factor Shares," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201620, University of Turin.
    4. La Torre, Davide & Marsiglio, Simone & Privileggi, Fabio, 2018. "Fractal Attractors in Economic Growth Models with Random Pollution Externalities," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201801, University of Turin.
    5. Torre, Davide La & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2019. "A stochastic economic growth model with health capital and state-dependent probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 81-93.
    6. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2021. "Generalized Fractal Transforms with Condensation: a Macroeconomic-Epidemiological Application," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202107, University of Turin.
    7. La Torre, Davide & Marsiglio,Simone & Mendivil, Franklin & Privileggi, Fabio, 2023. "Stochastic Optimal Growth through State-Dependent Probabilities," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202312, University of Turin.
    8. Guido Cozzi & Fabio Privileggi, 2009. "The fractal nature of inequality in a fast growing world: new version," Working Papers 2009_30, Business School - Economics, University of Glasgow.
    9. Bucci, Alberto & Florio, Massimo & La Torre, Davide, 2012. "Government spending and growth in second-best economies," Economic Modelling, Elsevier, vol. 29(3), pages 654-663.
    10. Orlando Gomes, 2010. "Consumer confidence, endogenous growth and endogenous cycles," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(4), pages 377-404, September.
    11. De, Supriyo, 2014. "Intangible capital and growth in the ‘new economy’: Implications of a multi-sector endogenous growth model," Structural Change and Economic Dynamics, Elsevier, vol. 28(C), pages 25-42.
    12. Stefano Bosi & Carmen Camacho & Thai Ha-Huy, 2023. "On the uniqueness of the optimal path in a discrete-time model à la Lucas (1988)," PSE Working Papers halshs-03920386, HAL.
    13. Mitra, Tapan & Privileggi, Fabio, 2006. "Cantor type attractors in stochastic growth models," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 626-637.
    14. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
    15. Orlando Gomes, 2008. "Decentralized Allocation of Human Capital and Nonlinear Growth," Computational Economics, Springer;Society for Computational Economics, vol. 31(1), pages 45-75, February.
    16. Diego Romero‐Avila, 2006. "Fiscal Policies And Output In The Long Run: A Panel Cointegration Approach Applied To The Oecd," Manchester School, University of Manchester, vol. 74(3), pages 360-388, June.
    17. Guido Cozzi & Fabio Privileggi, 2007. "The Fractal Nature of Inequality in a Fast Growing World," Working Papers 2007_45, Business School - Economics, University of Glasgow.
    18. A. Bucci & C. Colapinto & M. Forster & D. La Torre, 2011. "Stochastic technology shocks in an extended Uzawa–Lucas model: closed-form solution and long-run dynamics," Journal of Economics, Springer, vol. 103(1), pages 83-99, May.
    19. Sergio Cesaratto, 2010. "Endogenous Growth Theory Twenty Years On: A Critical Assessment," Bulletin of Political Economy, Bulletin of Political Economy, vol. 4(1), pages 1-30, June.
    20. Orlando Gomes, 2006. "Routes to chaos in macroeconomic theory," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 33(6), pages 437-468, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uto:dipeco:201509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Piero Cavaleri or Marina Grazioli (email available below). General contact details of provider: https://edirc.repec.org/data/detorit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.