IDEAS home Printed from https://ideas.repec.org/p/mar/magkse/201918.html
   My bibliography  Save this paper

Revenue decoupling and energy consumption: Empirical evidence from the U.S. electric utilities sector

Author

Listed:
  • Victor von Loessl

    (University of Kassel)

  • Heike Wetzel

    (University of Kassel)

Abstract

Energy efficiency provides a substantial opportunity to tackle increasing greenhouse gas emissions. However, in traditionally regulated energy markets, energy providers maximize their profits by selling electricity or heat as long as their marginal revenue exceeds their marginal costs of production. This so called ’throughput incentive’ fundamentally restricts the motivation of utilities to invest in energy efficiency. This paper therefore investigates the relation between the regulatory policy revenue decoupling, that separates utilities’ revenue from sales fluctuations, and electricity customers’ energy demand and efficiency in the U.S. To address the research question at hand, we follow recent developments in energy demand function modeling and Stochastic Frontier Analysis (SFA) estimation techniques that allow to account for persistent as well as transient efficiency. The estimation results show a significant negative correlation between revenue decoupling and electricity consumption patterns.Furthermore, we find electricity customers have small transient inefficiency. However, results indicate an underlying persistent inefficiency across the entire electric sector.

Suggested Citation

  • Victor von Loessl & Heike Wetzel, 2019. "Revenue decoupling and energy consumption: Empirical evidence from the U.S. electric utilities sector," MAGKS Papers on Economics 201918, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  • Handle: RePEc:mar:magkse:201918
    as

    Download full text from publisher

    File URL: https://www.uni-marburg.de/fb02/makro/forschung/magkspapers/paper_2019/18-2019_vonloessl.pdf
    File Function: First 201918
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    2. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    3. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    4. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    5. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    6. Gale A. Boyd, 2008. "Estimating Plant Level Energy Efficiency with a Stochastic Frontier," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-44.
    7. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    8. Apergis, Nicholas & Payne, James E., 2010. "The emissions, energy consumption, and growth nexus: Evidence from the commonwealth of independent states," Energy Policy, Elsevier, vol. 38(1), pages 650-655, January.
    9. Timothy Brennan, 2010. "Decoupling in electric utilities," Journal of Regulatory Economics, Springer, vol. 38(1), pages 49-69, August.
    10. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    11. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    12. Jimenez, Raul & Mercado, Jorge, 2014. "Energy intensity: A decomposition and counterfactual exercise for Latin American countries," Energy Economics, Elsevier, vol. 42(C), pages 161-171.
    13. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    14. Buck, J. & Young, D., 2007. "The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study," Energy, Elsevier, vol. 32(9), pages 1769-1780.
    15. Giles, David E. A., 1982. "The interpretation of dummy variables in semilogarithmic equations : Unbiased estimation," Economics Letters, Elsevier, vol. 10(1-2), pages 77-79.
    16. Arlan Brucal & Nori Tarui, 2018. "Revenue Decoupling for Electric Utilities: Impacts on Prices and Welfare," Working Papers 201814, University of Hawaii at Manoa, Department of Economics.
    17. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    18. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    19. Jenya Kahn-Lang, 2016. "Effects of Electric Utility Decoupling on Energy Efficiency," The Energy Journal, , vol. 37(4), pages 297-314, October.
    20. Eto, Joseph & Stoft, Steven & Belden, Timothy, 1997. "The theory and practice of decoupling utility revenues from sales," Utilities Policy, Elsevier, vol. 6(1), pages 43-55, March.
    21. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    22. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    23. Kennedy, Peter E, 1981. "Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations [The Interpretation of Dummy Variables in Semilogarithmic Equations]," American Economic Review, American Economic Association, vol. 71(4), pages 801-801, September.
    24. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, , vol. 29(3), pages 1-26, July.
    25. Gale A. Boyd and Joseph M. Roop, 2004. "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-102.
    26. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    27. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    28. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    3. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    4. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    5. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    6. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    7. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    8. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    9. Dolšak, Janez & Hrovatin, Nevenka & Zorić, Jelena, 2022. "Estimating the efficiency in overall energy consumption: Evidence from Slovenian household-level data," Energy Economics, Elsevier, vol. 114(C).
    10. Lester C. Hunt & Paraskevas Kipouros, 2023. "Energy Demand and Energy Efficiency in Developing Countries," Energies, MDPI, vol. 16(3), pages 1-26, January.
    11. von Loessl, Victor & Wetzel, Heike, 2022. "Revenue decoupling, energy demand, and energy efficiency: Empirical evidence from the U.S. electricity sector," Utilities Policy, Elsevier, vol. 79(C).
    12. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    13. Boogen, Nina, 2017. "Estimating the potential for electricity savings in households," Energy Economics, Elsevier, vol. 63(C), pages 288-300.
    14. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    15. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    16. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    17. Giovanni Marin & Alessandro Palma, 2015. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Working Papers 2015.104, Fondazione Eni Enrico Mattei.
    18. Akihiro Otsuka, 2020. "How do population agglomeration and interregional networks improve energy efficiency?," Asia-Pacific Journal of Regional Science, Springer, vol. 4(1), pages 1-25, February.
    19. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
    20. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).

    More about this item

    Keywords

    Revenue decoupling; energy efficiency; stochastic frontier analysis; demand frontier function; transient and persistent efficiency;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:201918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.