IDEAS home Printed from https://ideas.repec.org/p/lvl/pmmacr/2013-11.html
   My bibliography  Save this paper

Pauvreté monétaire versus non-monétaire au Burundi

Author

Listed:
  • Jean-Claude Nsabimana
  • Nicolas Ndayishimiye
  • Christian Kwidera
  • Aurélien Beko

Abstract

L’objectif général de l’étude est d’analyser la situation de la pauvreté au Burundi. Pour ce faire, trois objectifs spécifiques sont considérés : évaluer la pauvreté monétaire à l’aide d’une échelle d’équivalence ; construire un indicateur composite de la pauvreté basé sur l’approche multidimensionnelle ; et enfin identifier les principaux déterminants de la pauvreté. L’estimation du modèle d’Engel a permis de dégager trois échelles associées à trois tranches d’âges qui se sont révélées significatives. Il convient dès lors d’utiliser ces coefficients dans les études sur les conditions de vie au Burundi. Nos résultats montrent une sensibilité des mesures de pauvreté selon notre échelle empirique, si l’on ne tient pas compte des échelles. L’application de la méthode de l’analyse des correspondances multiples évalue la prévalence de la pauvreté multidimensionnelle à 70%, c’est à dire légèrement au-dessus de la prévalence de la pauvreté monétaire, évaluée à 69% selon le modèle empirique. Le caractère rural de la pauvreté a été mis en exergue par l’utilisation des approches monétaires et non monétaires. De plus, les tests de dominance stochastique révèlent que le sud et le nord sont les régions les plus touchées par le phénomène de pauvreté. L’utilisation du modèle Probit et Biprobit a permis de mettre en exergue les caractéristiques sociodémographiques qui contribuent le plus à la probabilité d’être pauvre. Des recommandations de politiques de lutte contre la pauvreté sont formulées à partir des résultats de l’étude.

Suggested Citation

  • Jean-Claude Nsabimana & Nicolas Ndayishimiye & Christian Kwidera & Aurélien Beko, 2013. "Pauvreté monétaire versus non-monétaire au Burundi," Working Papers PMMA 2013-11, PEP-PMMA.
  • Handle: RePEc:lvl:pmmacr:2013-11
    as

    Download full text from publisher

    File URL: https://portal.pep-net.org/documents/download/id/21103
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Ayadi & AbdelRahmen El Lahga & Naouel Chtioui, 2007. "Pauvreté et inégalités en Tunisie: une approche non monétaire," Working Papers PMMA 2007-05, PEP-PMMA.
    2. Atkinson, A B, 1987. "On the Measurement of Poverty," Econometrica, Econometric Society, vol. 55(4), pages 749-764, July.
    3. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    4. Alkire, Sabina & Foster, James, 2011. "Counting and multidimensional poverty measurement," Journal of Public Economics, Elsevier, vol. 95(7), pages 476-487.
    5. Martin Ravallion, 2011. "On multidimensional indices of poverty," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(2), pages 235-248, June.
    6. Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
    7. Ravallion, M., 1992. "Poverty Comparisons - A Guide to Concepts and Methods," Papers 88, World Bank - Living Standards Measurement.
    8. Jean-Yves Duclos & David Sahn & Stephen D. Younger, 2006. "Robust Multidimensional Poverty Comparisons with Discrete Indicators of Well-being," Cahiers de recherche 0628, CIRPEE.
    9. Lanjouw, Peter & Ravallion, Martin, 1995. "Poverty and Household Size," Economic Journal, Royal Economic Society, vol. 105(433), pages 1415-1434, November.
    10. Louis-Marie Asselin, 2009. "Analysis of Multidimensional Poverty," Economic Studies in Inequality, Social Exclusion, and Well-Being, Springer, edition 1, number 978-1-4419-0843-8, November.
    11. Louis-Marie Asselin, 2009. "Multidimensional Poverty and Inequality Analysis," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Analysis of Multidimensional Poverty, edition 1, chapter 0, pages 53-71, Springer.
    12. Jenkins, Stephen P & Cowell, Frank A, 1994. "Parametric Equivalence Scales and Scale Relativities," Economic Journal, Royal Economic Society, vol. 104(425), pages 891-900, July.
    13. Maasoumi, Esfandiar, 1986. "The Measurement and Decomposition of Multi-dimensional Inequality," Econometrica, Econometric Society, vol. 54(4), pages 991-997, July.
    14. Borel Anicet Foko Tagne & Francis Ndém & Rosine Tchakoté, 2007. "Pauvreté et inégalités des conditions de vie au Cameroun: une approche micro multidimensionnelle," Working Papers PMMA 2007-02, PEP-PMMA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsabimana, Jean-claude & Ndayishimiye, Nicolas & Kwidera, Christian & Beko, Aurélien, 2013. "Pauvreté monétaire versus non monétaire au Burundi," PEP Working Papers 160423, Partnership for Economic Policy (PEP).
    2. Malokele Nanivazo, 2015. "First Order Dominance Analysis: Child Wellbeing in the Democratic Republic of Congo," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(1), pages 235-255, May.
    3. Vivien Kana Zeumo & Blaise Some & Alexis Tsoukiàs, 2011. "A survey on Multidimensional Poverty Measurement: a Decision Aiding Perspective," Working Papers hal-00875525, HAL.
    4. Alkire, Sabina & Santos, Maria Emma, 2014. "Measuring Acute Poverty in the Developing World: Robustness and Scope of the Multidimensional Poverty Index," World Development, Elsevier, vol. 59(C), pages 251-274.
    5. Koen Decancq & Marc Fleurbaey & François Maniquet, 2019. "Multidimensional poverty measurement with individual preferences," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(1), pages 29-49, March.
    6. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    7. Gbetoton Nadege Djossou & Gilles Quentin Kane & Jacob Novignon, 2017. "Is Growth Pro‐Poor in Benin? Evidence Using a Multidimensional Measure of Poverty," Poverty & Public Policy, John Wiley & Sons, vol. 9(4), pages 426-443, December.
    8. Sung-Geun Kim, 2015. "Fuzzy Multidimensional Poverty Measurement: An Analysis of Statistical Behaviors," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(3), pages 635-667, February.
    9. Mekonnen Bersisa & Almas Heshmati, 2021. "A Distributional Analysis of Uni-and Multidimensional Poverty and Inequalities in Ethiopia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 805-835, June.
    10. Gabriella Vindigni & I. Peri & Paolo Prosperi, 2011. "Problematiche aperte nell’analisi della povertà: questioni di misura e progressi nel raggiungimento degli Obiettivi del Millennio," Post-Print hal-01190051, HAL.
    11. Agbodji, Akoete Ega & Batana, Yele Maweki & Ouedraogo, Denis, 2013. "Gender inequality in multidimensional welfare deprivation in west Africa : the case of Burkina Faso and Togo," Policy Research Working Paper Series 6522, The World Bank.
    12. Sabina Alkire & James Foster, 2011. "Understandings and misunderstandings of multidimensional poverty measurement," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(2), pages 289-314, June.
    13. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    14. Wulung Hanandita & Gindo Tampubolon, 2016. "Multidimensional Poverty in Indonesia: Trend Over the Last Decade (2003–2013)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(2), pages 559-587, September.
    15. Sam Jones, 2019. "Counting-based multidimensional poverty identification: From deprivation weights to bundles," WIDER Working Paper Series wp-2019-55, World Institute for Development Economic Research (UNU-WIDER).
    16. David Madden, 2015. "Health and Wealth on the Roller-Coaster: Ireland, 2003–2011," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 121(2), pages 387-412, April.
    17. Bénédicte Apouey & David Madden, 2023. "Health poverty," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 19, pages 202-211, Edward Elgar Publishing.
    18. Jane Kabubo-Mariara & Anthony Wambugu & Susan Musau, 2011. "Multidimensional Poverty in Kenya: Analysis of Maternal and Child Wellbeing," Working Papers PMMA 2011-12, PEP-PMMA.
    19. Mehmet Pinar & Thanasis Stengos & Nikolas Topaloglou, 2022. "Stochastic dominance spanning and augmenting the human development index with institutional quality," Annals of Operations Research, Springer, vol. 315(1), pages 341-369, August.
    20. Gordon Anderson, 2003. "Poverty in America 1970-1990: who did gain ground? An application of stochastic dominance criteria employing simultaneous inequality tests in a partial panel," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 621-640.

    More about this item

    Keywords

    pauvreté; Echelle d’équivalence; approche multidimensionnelle; seuil; Modèle logistique; déterminants de la pauvreté;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:pmmacr:2013-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/cdvlvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.