IDEAS home Printed from https://ideas.repec.org/p/liu/liucec/2021-10.html
   My bibliography  Save this paper

Stock marketsas a network: from description to inference

Author

Listed:
  • Marcello Esposito

Abstract

Among the statistical techniques used to describe the behaviour of the financial markets, one of the most promising is based on the network analysis of the stock market. In this framework, the stock market is represented as a graph with nodes (the single stocks), edges (connections between stocks), and attributes (industry classification, volumes ...). The application of network analysis to the stock market is not new, but in previous contributions the market graph has been mainly derived from the correlationmatrix of the stock prices. This is a limitation, and the risks are to express in different words what traditional financial econometrics has already said about the returns’ distribution. Moreover, if we want to use network analysis not only as a descriptive tool but also as an inference instrument, we need other data than the correlation matrix itself. For this reason, we integrated the analysis and built the market graph with new type of data taken from the observation of the information gathering activity performed by retail investors through the Google’s search engine. We focussed the attention on financial crises, when a shock hits the economy in such a profound way that almost all the parameters entering the pricing equation of stocks must be reassessed. Those periods are relatively rare and short. They are characterised by extremely high levels of volatility and correlation. In these moments, searching for new information becomes of paramount importance. And then it is in these moments that we expect to observe more neatly the working of the underlying network.

Suggested Citation

  • Marcello Esposito, 2021. "Stock marketsas a network: from description to inference," LIUC Papers in Economics 2021-10, Cattaneo University (LIUC).
  • Handle: RePEc:liu:liucec:2021-10
    as

    Download full text from publisher

    File URL: http://www.biblio.liuc.it/wp/wp10/wp10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    2. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    3. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    4. Caraiani, Petre, 2012. "Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3629-3637.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    2. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    3. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    5. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    6. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    7. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    8. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    9. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    10. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    11. Fei Ren & Wei-Xing Zhou, 2014. "Dynamic Evolution of Cross-Correlations in the Chinese Stock Market," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
    12. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    13. Jean-Baptiste Hasse, 2022. "Systemic risk: a network approach," Empirical Economics, Springer, vol. 63(1), pages 313-344, July.
    14. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhang, Wei, 2019. "Financial systemic risk measurement based on causal network connectedness analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 290-307.
    15. Bing Li, 2017. "Network Evolution of the Chinese Stock Market: A Study based on the CSI 300 Index," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(3), pages 1-5.
    16. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    17. de Pontes, Lucca Siebra & Rêgo, Leandro Chaves, 2022. "Impact of macroeconomic variables on the topological structure of the Brazilian stock market: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    18. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    19. Jean-Baptiste Hasse, 2020. "Systemic Risk: a Network Approach," Working Papers halshs-02893780, HAL.
    20. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liu:liucec:2021-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Ballestra (email available below). General contact details of provider: https://edirc.repec.org/data/liuccit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.