IDEAS home Printed from https://ideas.repec.org/p/lis/liswps/600.html
   My bibliography  Save this paper

Extension of the κ-generalized distribution: new four-parameter models for the size distribution of income and consumption

Author

Listed:
  • Masato Okamoto

Abstract

This paper studies a new kind of generalized beta distribution that is different from the GB1 and GB2 of McDonald (1984). This new four-parameter statistical distribution, the extended κ-generalized distribution of the second kind, abbreviated EκG2, is derived as one of two kinds of generalizations from the κ-generalized distribution of Clementi et al. (2007). By empirical comparison with the GB2 using the LIS income/consumption data, the EκG2 is found to be an overall better fit in terms of both frequency-based (FB) evaluation criteria, such as the likelihood, and money-amount-based (MAB) evaluation criteria, such as the accuracy of the estimated Lorentz curve. The EκG2 also overall outperforms the double Pareto-lognormal distribution (dPLN) of Reed (2003) in terms of FB criteria. Although not necessarily superior to the dPLN in terms of MAB criteria, the EκG2 is judged to be an overall better fit to the empirical distributions relative to the dPLN by a combined evaluation using both FB and MAB criteria. This paper also discusses similarities and differences in characteristics between the EκG2 and GB2, including the shapes of the distributions.

Suggested Citation

  • Masato Okamoto, 2013. "Extension of the κ-generalized distribution: new four-parameter models for the size distribution of income and consumption," LIS Working papers 600, LIS Cross-National Data Center in Luxembourg.
  • Handle: RePEc:lis:liswps:600
    as

    Download full text from publisher

    File URL: http://www.lisdatacenter.org/wps/liswps/600.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen P. Jenkins, 2007. "Inequality and the GB2 income distribution," Working Papers 73, ECINEQ, Society for the Study of Economic Inequality.
    2. Masato Okamoto, 2013. "Erratum to “Evaluation of the goodness of fit of new statistical size distributions with consideration of accurate income inequality estimation”," Economics Bulletin, AccessEcon, vol. 33(3), pages 2443-2444.
    3. F. Clementi & M. Gallegati & G. Kaniadakis, 2009. "A k-generalized statistical mechanics approach to income analysis," Papers 0902.0075, arXiv.org, revised Feb 2009.
    4. Brazauskas, Vytaras, 2002. "Fisher information matrix for the Feller-Pareto distribution," Statistics & Probability Letters, Elsevier, vol. 59(2), pages 159-167, September.
    5. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    6. William J. Reed & Fan Wu, 2008. "New Four- and Five-Parameter Models for Income Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 11, pages 211-223, Springer.
    7. Reed, William J., 2003. "The Pareto law of incomes—an explanation and an extension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 469-486.
    8. Kaniadakis, G., 2001. "Non-linear kinetics underlying generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(3), pages 405-425.
    9. Kaniadakis, G. & Lissia, M. & Scarfone, A.M., 2004. "Deformed logarithms and entropies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 41-49.
    10. Ripsy Bandourian & Robert Turley & James McDonald, 2002. "A Comparison of Parametric Models of Income Distribution across Countries and over Time," LIS Working papers 305, LIS Cross-National Data Center in Luxembourg.
    11. Masato Okamoto, 2012. "Evaluation of the goodness of fit of new statistical size distributions with consideration of accurate income inequality estimation," Economics Bulletin, AccessEcon, vol. 32(4), pages 2969-2982.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    2. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    3. Wang, Frank Xuyan, 2021. "Shape factor asymptotic analysis II," MPRA Paper 110827, University Library of Munich, Germany.
    4. F. Clementi & M. Gallegati & G. Kaniadakis & S. Landini, 2016. "$\kappa$-generalized models of income and wealth distributions: A survey," Papers 1610.08676, arXiv.org.
    5. Masato Okamoto, 2014. "A flexible descriptive model for the size distribution of incomes," Economics Bulletin, AccessEcon, vol. 34(3), pages 1600-1610.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masato Okamoto, 2014. "A flexible descriptive model for the size distribution of incomes," Economics Bulletin, AccessEcon, vol. 34(3), pages 1600-1610.
    2. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    3. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    4. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    5. Masato Okamoto, 2022. "Lorenz and Polarization Orderings of the Double-Pareto Lognormal Distribution and Other Size Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 548-574, November.
    6. Masato Okamoto, 2012. "Evaluation of the goodness of fit of new statistical size distributions with consideration of accurate income inequality estimation," Economics Bulletin, AccessEcon, vol. 32(4), pages 2969-2982.
    7. Toda, Alexis Akira, 2012. "The double power law in income distribution: Explanations and evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 84(1), pages 364-381.
    8. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    9. Puente-Ajovin, Miguel & Ramos, Arturo, 2015. "An improvement over the normal distribution for log-growth rates of city sizes: Empirical evidence for France, Germany, Italy and Spain," MPRA Paper 67471, University Library of Munich, Germany.
    10. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    11. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    12. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    13. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    14. Toda, Alexis Akira, 2017. "A Note On The Size Distribution Of Consumption: More Double Pareto Than Lognormal," Macroeconomic Dynamics, Cambridge University Press, vol. 21(6), pages 1508-1518, September.
    15. Richard Burkhauser & Shuaizhang Feng & Stephen Jenkins & Jeff Larrimore, 2011. "Estimating trends in US income inequality using the Current Population Survey: the importance of controlling for censoring," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 393-415, September.
    16. Bourguignon, Marcelo & Saulo, Helton & Fernandez, Rodrigo Nobre, 2016. "A new Pareto-type distribution with applications in reliability and income data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 166-175.
    17. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007. "Estimating and Combining National Income Distributions Using Limited Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
    18. Ván, P., 2006. "Unique additive information measures—Boltzmann–Gibbs–Shannon, Fisher and beyond," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 28-33.
    19. Duangkamon Chotikapanich & D. S. Prasada Rao & Kam Ki Tang, 2007. "Estimating Income Inequality In China Using Grouped Data And The Generalized Beta Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 53(1), pages 127-147, March.
    20. Sohn, Alexander & Klein, Nadja & Kneib, Thomas, 2014. "A new semiparametric approach to analysing conditional income distributions," University of Göttingen Working Papers in Economics 192, University of Goettingen, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lis:liswps:600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Piotr Paradowski (email available below). General contact details of provider: https://edirc.repec.org/data/lisprlu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.