IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/11-35.html
   My bibliography  Save this paper

Strictness of Environmental Policy and Investment in Abatement

Author

Listed:
  • Maria J. Gil-Molto
  • Bouwe Dijkstra

Abstract

In this paper we model an oligopoly where .rms invest in abatement technologies and emissions are taxed by the government. We show that a stricter environmental policy does not necessarily lead to an increase in .rms.R&D investment into cleaner production methods. In fact, the emission-to-output ratio may be a U-shaped function of the environmental damage parameter. This result holds both when the government can commit and in the social optimum. When the government cannot commit, this relationship is ambiguous except in markets with few .rms. Our results further suggest that if the emission-to-output ratio is decreasing throughout, output is a U-shaped function of the environmental damage.

Suggested Citation

  • Maria J. Gil-Molto & Bouwe Dijkstra, 2011. "Strictness of Environmental Policy and Investment in Abatement," Discussion Papers in Economics 11/35, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:11/35
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp11-35.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elias Asproudis & Maria José Gil-Moltó, 2009. "Technological choice under environmentalists’ participation in Emissions Trading Systems," Discussion Papers in Economics 09/9, Division of Economics, School of Business, University of Leicester.
    2. Downing, Paul B. & White, Lawrence J., 1986. "Innovation in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 13(1), pages 18-29, March.
    3. Simpson, R. David & Bradford, Robert III, 1996. "Taxing Variable Cost: Environmental Regulation as Industrial Policy," Journal of Environmental Economics and Management, Elsevier, vol. 30(3), pages 282-300, May.
    4. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    5. Requate, Till & Unold, Wolfram, 2003. "Environmental policy incentives to adopt advanced abatement technology:: Will the true ranking please stand up?," European Economic Review, Elsevier, vol. 47(1), pages 125-146, February.
    6. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    7. Carraro,Carlo & Siniscalco,Domenico (ed.), 1997. "New Directions in the Economic Theory of the Environment," Cambridge Books, Cambridge University Press, number 9780521590891.
    8. Emmanuel Petrakis & Anastasios Xepapadeas, "undated". "To Commit or Not to Commit: Environmental Policy In Imperfectly Competitive Markets," Working Papers 0110, University of Crete, Department of Economics.
    9. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inge M. Bijgaart & Sjak Smulders, 2018. "Does a Recession Call for Less Stringent Environmental Policy? A Partial-Equilibrium Second-Best Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 807-834, August.
    2. Li, Shoude & Fu, Tong, 2022. "Abatement technology innovation, worker productivity and firm profitability: A dynamic analysis," Energy Economics, Elsevier, vol. 115(C).
    3. Bréchet, Thierry & Meunier, Guy, 2014. "Are clean technology and environmental quality conflicting policy goals?," Resource and Energy Economics, Elsevier, vol. 38(C), pages 61-83.
    4. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouwe R. Dijkstra & Maria J. Gil‐Moltó, 2018. "Is emission intensity or output U‐shaped in the strictness of environmental policy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(2), pages 177-201, April.
    2. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    3. Martin Larsson, 2017. "EU Emissions Trading: Policy-Induced Innovation, or Business as Usual? Findings from Company Case Studies in the Republic of Croatia," Working Papers 1705, The Institute of Economics, Zagreb.
    4. Hattori, Keisuke, 2011. "Optimal Environmental Policy under Monopolistic Provision of Clean Technologies," MPRA Paper 28837, University Library of Munich, Germany.
    5. Jessica Coria & Magnus Hennlock, 2012. "Taxes, permits and costly policy response to technological change," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 35-60, January.
    6. Shoji Haruna & Rajeev K. Goel, 2019. "Optimal pollution control in a mixed oligopoly with research spillovers," Australian Economic Papers, Wiley Blackwell, vol. 58(1), pages 21-40, March.
    7. Eva Camacho-Cuena & Till Requate & Israel Waichman, 2012. "Investment Incentives Under Emission Trading: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 229-249, October.
    8. Alejandro Caparrós & Richard E. Just & David Zilberman, 2015. "Dynamic Relative Standards versus Emission Taxes in a Putty-Clay Model," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 277-308.
    9. Mehdi Fadaee & Luca Lambertini, 2015. "Non-tradeable pollution permits as green R&D incentives," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 27-42, January.
    10. Rabah Amir & Adriana Gama & Katarzyna Werner, 2018. "On Environmental Regulation of Oligopoly Markets: Emission versus Performance Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 147-167, May.
    11. Arguedas, Carmen & van Soest, Daan P., 2009. "On reducing the windfall profits in environmental subsidy programs," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 192-205, September.
    12. Allen Bellas & Duane Finney & Ian Lange, 2013. "Technological Advance in Cooling Systems at U.S. Power Plants," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    13. Wood, Peter J. & Heindl, Peter & Jotzo, Frank & Löschel, Andreas, 2013. "Linking price and quantity pollution controls under uncertainty," ZEW Discussion Papers 13-025, ZEW - Leibniz Centre for European Economic Research.
    14. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    15. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    16. Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
    17. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
    18. Alain-Désiré Nimubona & Ujjayant Chakravorty & Andrew Leach, 2014. "The Search for Abatement Technologies in the Alberta Oil Sands," CESifo Working Paper Series 4781, CESifo.
    19. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    20. Ashokankur Datta & E. Somanathan, 2016. "Climate Policy and Innovation in the Absence of Commitment," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 917-955.

    More about this item

    Keywords

    Environmental innovation; environmental taxation; commitment; oligopoly;
    All these keywords.

    JEL classification:

    • L12 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Monopoly; Monopolization Strategies
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:11/35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.