Analytic and Bootstrap-after-Cross-Validation Methods for Selecting Penalty Parameters of High-Dimensional M-Estimators
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jeffrey M Wooldridge, 2010.
"Econometric Analysis of Cross Section and Panel Data,"
MIT Press Books,
The MIT Press,
edition 2, volume 1, number 0262232588, December.
- Jeffrey M. Wooldridge, 2001. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262232197, December.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
- Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Denis Chetverikov & . ., 2016. "On cross-validated Lasso," CeMMAP working papers CWP47/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lancaster,Tony, 1992. "The Econometric Analysis of Transition Data," Cambridge Books, Cambridge University Press, number 9780521437899.
- Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
- Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adam Baybutt, 2024. "Dynamic Latent-Factor Model with High-Dimensional Asset Characteristics," Papers 2405.15721, arXiv.org.
- Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Denis Chetverikov & Jesper Riis-Vestergaard S{o}rensen, 2021. "Selecting Penalty Parameters of High-Dimensional M-Estimators using Bootstrapping after Cross-Validation," Papers 2104.04716, arXiv.org, revised Aug 2023.
- Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017.
"Doubly robust uniform confidence band for the conditional average treatment effect function,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band for the Conditional Average Treatment Effect Function," Papers 1601.02801, arXiv.org, revised Oct 2016.
- Lee, Sokbae & Okui, Ryo & Whang, Yoon-Jae, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," LSE Research Online Documents on Economics 86852, London School of Economics and Political Science, LSE Library.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers 03/16, Institute for Fiscal Studies.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band For The Conditional Average Treatment Effect Function," KIER Working Papers 931, Kyoto University, Institute of Economic Research.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers CWP03/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
- Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022.
"K-expectiles clustering,"
Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang, 2021. "K-expectiles clustering," IRTG 1792 Discussion Papers 2021-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022.
"Dynamic large financial networks via conditional expected shortfalls,"
European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
- Giovanni Bonaccolto & Massimiliano Caporin & Bertrand Maillet, 2022. "Dynamic Large Financial Networks via Conditional Expected Shortfalls," Post-Print hal-03287947, HAL.
- Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019. "lassopack: Model selection and prediction with regularized regression in Stata," Papers 1901.05397, arXiv.org.
- Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
- Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015.
"Quantile regression with censoring and endogeneity,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
- Victor Chernozhukov & Ivan Fernandez-Val & Amanda Kowalski, 2011. "Quantile Regression with Censoring and Endogeneity," Papers 1104.4580, arXiv.org, revised Mar 2014.
- Victor Chernozhukov & Iván Fernández-Val & Amanda E. Kowalski, 2011. "Quantile Regression with Censoring and Endogeneity," NBER Working Papers 16997, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Ivan Fernandez-Val & Amanda Kowalski, 2011. "Quantile Regression with Censoring and Endogeneity," Cowles Foundation Discussion Papers 1797, Cowles Foundation for Research in Economics, Yale University.
- Victor Chernozhukov & Ivan Fernandez-Val & Amanda Kowalski, 2011. "Quantile regression with censoring and endogeneity," CeMMAP working papers CWP20/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
- Luke Connelly & Gianluca Fiorentini & Marica Iommi, 2022. "Supply-side solutions targeting demand-side characteristics: causal effects of a chronic disease management program on adherence and health outcomes," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(7), pages 1203-1220, September.
More about this item
Keywords
penalty parameter selection; penalized M-estimation; high-dimensional models; sparsity; cross-validation; bootstrap;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:2104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.