IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/0605.html
   My bibliography  Save this paper

The Integration Order of Vector Autoregressive Processes

Author

Listed:
  • Massimo Franchi

    (Department of Economics, University of Copenhagen)

Abstract

We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2) conditions (Johansen, 1996) is proved and polynomial cointegration discussed in the general setup.

Suggested Citation

  • Massimo Franchi, "undated". "The Integration Order of Vector Autoregressive Processes," Discussion Papers 06-05, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:0605
    as

    Download full text from publisher

    File URL: http://www.econ.ku.dk/english/research/publications/wp/2006/0605.pdf/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. la Cour, Lisbeth, 1998. "A Parametric Characterization Of Integrated Vector Autoregressive (Var) Processes," Econometric Theory, Cambridge University Press, vol. 14(2), pages 187-199, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    2. Arbués, Ignacio & Ledo, Ramiro & Matilla-García, Mariano, 2016. "Automatic identification of general vector error correction models," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-41.
    3. Franchi, Massimo & Paruolo, Paolo, 2011. "A characterization of vector autoregressive processes with common cyclical features," Journal of Econometrics, Elsevier, vol. 163(1), pages 105-117, July.
    4. Massimo Franchi, 2017. "On the structure of state space systems with unit roots," DSS Empirical Economics and Econometrics Working Papers Series 2017/4, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    2. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    3. Massimo Franchi, 2006. "A General Representation Theorem for Integrated Vector Autoregressive Processes," Discussion Papers 06-16, University of Copenhagen. Department of Economics.
    4. Massimo Franchi, 2017. "On the structure of state space systems with unit roots," DSS Empirical Economics and Econometrics Working Papers Series 2017/4, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    5. B. Nielsen, 2009. "Test for cointegration rank in general vector autoregressions," Economics Papers 2009-W10, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Keywords

    unit roots; order of integration; polynomial cointegration;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:0605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.