IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1615.html
   My bibliography  Save this paper

Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster

Author

Listed:
  • Christian Tilk

    (Johannes Gutenberg-University Mainz, Germany)

  • Ann-Kathrin Rothenbächer

    (Johannes Gutenberg-University Mainz, Germany)

  • Timo Gschwind

    (Johannes Gutenberg-University Mainz, Germany)

  • Stefan Irnich

    (Johannes Gutenberg-University Mainz, Germany)

Abstract

With their paper “Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints” [Discrete Optimization 3, 2006, pp. 255–273] Righini and Salani introduced bounded bidirectional dynamic programming (DP) as an acceleration technique for solving variants of the shortest path problem with resource constraints (SPPRC). SPPRCs must be solved iteratively when vehicle routing and scheduling problems are tackled via Lagrangian relaxation or column-generation techniques. Righini and Salani and several subsequent works have shown that bounded bidirectional DP algorithms are often superior to their monodirectional counterparts, since the former can mitigate the effect that the number of labels increases strongly with the path length. Bidirectional DP has become a quasi-standard for solving SPPRCs. In computational experiments, however, one can still observe that the number of forward and backward label extensions is very unbalanced despite a symmetric bounding of a critical resource in the middle of its feasible domain. We exploit this asymmetry in forward and backward label extensions and introduce a so-called dynamic half-way point, which is a dynamic bounding criterion based on the current state of the simultaneously solved forward and backward DPs. Experiments with the standard and the electric vehicle routing problem with time windows as well as the vehicle routing and truck driver scheduling problem con?rm that dynamic half-way points better balance forward and backward workload.

Suggested Citation

  • Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1615
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1615.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    3. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    4. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    5. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    6. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    7. Christian Tilk, 2016. "Branch-and-Price-and-Cut for the Vehicle Routing and Truck Driver Scheduling Problem," Working Papers 1616, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Asvin Goel, 2009. "Vehicle Scheduling and Routing with Drivers' Working Hours," Transportation Science, INFORMS, vol. 43(1), pages 17-26, February.
    10. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    11. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    12. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    13. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    14. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    15. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Tilk, 2016. "Branch-and-Price-and-Cut for the Vehicle Routing and Truck Driver Scheduling Problem," Working Papers 1616, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    2. Stefan Faldum & Sarah Machate & Timo Gschwind & Stefan Irnich, 2024. "Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1063-1097, December.
    3. Stefan Faldum & Timo Gschwind & Stefan Irnich, 2023. "Subset-Row Inequalities and Unreachability in Path-based Formulations for Routing and Scheduling Problems," Working Papers 2310, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    5. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    8. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    9. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    11. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    12. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    13. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    15. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    16. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    17. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    18. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    19. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    20. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.

    More about this item

    Keywords

    Shortest path problem with resource constraints (SPPRC); bidirectional labeling algorithms;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.