IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1517.html
   My bibliography  Save this paper

A New Compact Formulation for Discrete p-Dispersion

Author

Listed:
  • David Sayah

    (Johannes Gutenberg University Mainz)

  • Stefan Irnich

    (Johannes Gutenberg University Mainz)

Abstract

This paper addresses the discrete p-dispersion problem (PDP) which is about selecting p facilities from a given set of candidates in such a way that the minimum distance between selected facilities is maximized. We propose a new compact formulation for this problem. In addition, we discuss two simple enhancements of the new formulation: Simple bounds on the optimal distance can be exploited to reduce the size and to increase the tightness of the model at a relatively low cost of additional computation time. Moreover, the new formulation can be further strengthened by adding valid inequalities. We present a computational study carried out over a set of large-scale test instances in order to compare the new formulation against a standard mixed-integer programming model of the PDP, a line search, and a binary search. Our numerical results indicate that the new formulation in combination with the simple bounds is solved to optimality by an out-of-the-box mixed-integer programming solver in 34 out of 40 instances, while this is neither possible with the standard model nor with the search procedures. For instances in which the line and binary search fail to ?nd a provably optimal solution, we achieve this by adding cuts to our enhanced formulation.

Suggested Citation

  • David Sayah & Stefan Irnich, 2015. "A New Compact Formulation for Discrete p-Dispersion," Working Papers 1517, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1517
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1517.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erkut, E. & ReVelle, C. & Ulkusal, Y., 1996. "Integer-friendly formulations for the r-separation problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 342-351, July.
    2. Erkut, Erhan & Neuman, Susan, 1989. "Analytical models for locating undesirable facilities," European Journal of Operational Research, Elsevier, vol. 40(3), pages 275-291, June.
    3. Daniel Porumbel & Jin-Kao Hao & Fred Glover, 2011. "A simple and effective algorithm for the MaxMin diversity problem," Annals of Operations Research, Springer, vol. 186(1), pages 275-293, June.
    4. Chaudhry, Sohail S & McCormick, S Thomas & Moon, I Douglas, 1986. "Locating independent facilities with maximum weight: Greedy heuristics," Omega, Elsevier, vol. 14(5), pages 383-389.
    5. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayah, David & Irnich, Stefan, 2017. "A new compact formulation for the discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 62-67.
    2. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    3. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    4. Sayyady, Fatemeh & Fathi, Yahya, 2016. "An integer programming approach for solving the p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 216-225.
    5. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    6. Amirgaliyeva, Zhazira & Mladenović, Nenad & Todosijević, Raca & Urošević, Dragan, 2017. "Solving the maximum min-sum dispersion by alternating formulations of two different problems," European Journal of Operational Research, Elsevier, vol. 260(2), pages 444-459.
    7. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    8. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    9. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    10. Zhengguan Dai & Kathleen Xu & Melkior Ornik, 2021. "Repulsion-based p-dispersion with distance constraints in non-convex polygons," Annals of Operations Research, Springer, vol. 307(1), pages 75-91, December.
    11. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Other publications TiSEM 9dfe6396-1933-45c0-b4e3-5, Tilburg University, School of Economics and Management.
    12. Rafael Martí & Francisco Parreño & Jorge Mortes, 2024. "Mathematical models and solving methods for diversity and equity optimization," Journal of Heuristics, Springer, vol. 30(5), pages 291-323, December.
    13. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    14. Drezner, Zvi & Kalczynski, Pawel & Salhi, Said, 2019. "The planar multiple obnoxious facilities location problem: A Voronoi based heuristic," Omega, Elsevier, vol. 87(C), pages 105-116.
    15. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    16. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    17. Daniel J. Rosenkrantz & Giri K. Tayi & S.S. Ravi, 2000. "Facility Dispersion Problems Under Capacity and Cost Constraints," Journal of Combinatorial Optimization, Springer, vol. 4(1), pages 7-33, March.
    18. Kevin Curtin & Richard Church, 2007. "Optimal dispersion and central places," Journal of Geographical Systems, Springer, vol. 9(2), pages 167-187, June.
    19. Lili Mei & Deshi Ye & Yong Zhang, 2018. "Approximation strategy-proof mechanisms for obnoxious facility location on a line," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 549-571, August.
    20. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.

    More about this item

    Keywords

    facility location; dispersion problems; max-min objective; integer programming;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.