IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1210.html
   My bibliography  Save this paper

Branch-and-Cut Algorithms for the Vehicle Routing Problem with Trailers and Transshipments

Author

Listed:
  • Michael Drexl

    (Johannes Gutenberg University Mainz)

Abstract

This paper studies the vehicle routing problem with trailers and transshipments (VRPTT), a practically relevant, but challenging, generalization of the classical vehicle routing problem. The paper makes three contributions: (i) Building on a non-trivial network representation, two mixed-integer programming formulations for the VRPTT are proposed. (ii) Based on these formulations, five different branch-and-cut algorithms are developed and implemented. (iii) The computational behaviour of the algorithms is analyzed in an extensive computational study, using a large number of test instances designed to resemble real-world VRPTTs.

Suggested Citation

  • Michael Drexl, 2012. "Branch-and-Cut Algorithms for the Vehicle Routing Problem with Trailers and Transshipments," Working Papers 1210, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1210
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1210.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Cheung, Raymond K. & Shi, Ning & Powell, Warren B. & Simao, Hugo P., 2008. "An attribute-decision model for cross-border drayage problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 217-234, March.
    3. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    4. Julia Rieck & Jürgen Zimmermann, 2010. "A new mixed integer linear model for a rich vehicle routing problem with docking constraints," Annals of Operations Research, Springer, vol. 181(1), pages 337-358, December.
    5. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    6. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    7. Hollis, B.L. & Forbes, M.A. & Douglas, B.E., 2006. "Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post," European Journal of Operational Research, Elsevier, vol. 173(1), pages 133-150, August.
    8. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    9. Francesco Maffioli & Anna Sciomachen, 1997. "A mixed-integer model for solving ordering problems with side constraints," Annals of Operations Research, Springer, vol. 69(0), pages 277-297, January.
    10. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Drexl, Michael, 2013. "Applications of the vehicle routing problem with trailers and transshipments," European Journal of Operational Research, Elsevier, vol. 227(2), pages 275-283.
    4. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2015. "Branch-and-Price for the Active-Passive Vehicle-Routing Problem," Working Papers 1513, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    6. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    7. Groß, Patrick-Oliver & Ehmke, Jan Fabian & Mattfeld, Dirk Christian, 2020. "Interval travel times for robust synchronization in city logistics vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    8. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    9. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2018. "Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 52(2), pages 300-319, March.
    10. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    12. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    13. Juliette Medina & Mike Hewitt & Fabien Lehuédé & Olivier Péton, 2019. "Integrating long-haul and local transportation planning: the Service Network Design and Routing Problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 119-145, June.
    14. Shao, Saijun & Xu, Gangyan & Li, Ming & Huang, George Q., 2019. "Synchronizing e-commerce city logistics with sliding time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 17-28.
    15. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    16. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    17. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    20. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.