IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp17046.html
   My bibliography  Save this paper

Machine Learning and Multiple Abortions

Author

Listed:
  • Kumar, Pradeep

    (University of Exeter)

  • Nicodemo, Catia

    (University of Oxford)

  • Oreffice, Sonia

    (University of Exeter)

  • Quintana-Domeque, Climent

    (University of Exeter)

Abstract

This study employs six Machine Learning methods - Logit, Lasso-Logit, Ridge-Logit, Random Forest, Extreme Gradient Boosting, and an Ensemble - alongside registry data on abortions in Spain from 2011-2019 to predict multiple abortions and assess monetary savings through targeted interventions. We find that Random Forest and an Ensemble method are most effective in the highest risk decile, capturing about 55% of cases, whereas linear models and Extreme Gradient Boosting excel in mid to lower deciles. We also show that targeting the top 20% most at-risk could yield cost savings of 5.44 to 8.2 million EUR, which could be reallocated to prevent unintended pregnancies arising from contraceptive failure, abusive relationships, and sexual assault, among other factors.

Suggested Citation

  • Kumar, Pradeep & Nicodemo, Catia & Oreffice, Sonia & Quintana-Domeque, Climent, 2024. "Machine Learning and Multiple Abortions," IZA Discussion Papers 17046, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp17046
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp17046.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason M. Lindo & Caitlin Knowles Myers & Andrea Schlosser & Scott Cunningham, 2020. "How Far Is Too Far? New Evidence on Abortion Clinic Closures, Access, and Abortions," Journal of Human Resources, University of Wisconsin Press, vol. 55(4), pages 1137-1160.
    2. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    3. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    2. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    3. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    4. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
    5. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Askitas, Nikos, 2024. "A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code," IZA Discussion Papers 17014, Institute of Labor Economics (IZA).
    7. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    8. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).
    9. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    10. Domonkos F. Vamossy, 2024. "Social Media Emotions and Market Behavior," Papers 2404.03792, arXiv.org.
    11. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    12. Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    13. Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2023. "What Can Economics Say about Alzheimer's Disease?," Journal of Economic Literature, American Economic Association, vol. 61(2), pages 428-470, June.
    14. Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023. "Micro-geographic property price and rent indices," Regional Science and Urban Economics, Elsevier, vol. 98(C).
    15. Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
    16. Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    18. Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022. "Multiway Cluster Robust Double/Debiased Machine Learning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
    19. Dario Sansone & Anna Zhu, 2023. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
    20. Hai-Anh H. Dang & Talip Kilic & Ksenia Abanokova & Gero Carletto, 2024. "Imputing Poverty Indicators without Consumption Data : An Exploratory Analysis," Policy Research Working Paper Series 10867, The World Bank.

    More about this item

    Keywords

    Extreme Gradient Boosting; Ridge; random forest; multiple abortions; Logit; Lasso; Ensemble; reproductive healthcare;
    All these keywords.

    JEL classification:

    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp17046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.