IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/202001010800009095.html
   My bibliography  Save this paper

Three essays in behavioral economics

Author

Listed:
  • Asad, Sher Afghan

Abstract

Over the last few decades, behavioral economics, by introducing psychology in the decision making process, has changed the way we think about the policy problems of our age. Governments and non-governmental organizations all over the world are using insights from behavioral economics to solve wide ranging issues in the domains such as health, wealth, education, social security, environment etc.. In this dissertation research I use insights from behavioral economics to understand two unrelated but pressing problems of our age; labor-market discrimination and road-safety behavior.In this dissertation, I first present a theory of worker side discrimination and highlight the importance of exploring worker side discrimination to improve our overall understanding of labor market discrimination. The main thesis of this work is that in many situations, workers' motivation to work for employer depends on employer's social group. More precisely, workers feel more motivated when they work for the same group employer and less so when working for an out-group employer. Workers' productivity differential provides incentive to the non-discriminatory employers to recruit workers from their own group and pay higher wages to own-group workers. The assortative matching of employers and workers leads to segregation of the labor force when there are enough same-group employers. However, under-representation of employers of one group leads to adverse labor market outcomes for the workers of that group in terms of wages. I show that this has implications for how we interpret the existence and source of discrimination in the labor markets. Specifically, I demonstrate that what is traditionally understood as discrimination by employers may, in fact, be a rational response to the worker's differential social preferences towards the employer's group identity. I also show that ignoring worker social preferences (and employer's beliefs about them) may lead to misleading conclusions about the sources of discrimination.In another chapter of this dissertation, I (with my co-authors) explore the evidence for the above theorized channel of discrimination in an online labor market. Specifically, we examine whether workers in the online economy discriminate against their employers via their social-preferences / motivation. In this chapter, we focus on racial identity and ask, do workers discriminate (say, by under providing effort) for an out-race employer relative to an otherwise-identical, own-race one? We run a well-powered model-based experiment using subjects from Amazon's Mechanical Turk (M-Turk). Interestingly, we find that white workers do not discriminate against their out-group employers, in-fact they work harder for black employers as compared to white employers. The results are exciting because it reflects the lack of bias in workers preferences towards the minority group employers in the online economy. The results imply that as the economies transition to online jobs, the possibility of discriminatory behavior against minorities may diminish.In the last chapter, I (along with my co-author) study another application of behavioral economics to understand road-safety behavior of the automotive drivers. Particularly, we look at the traffic-related messages such as “drive sober,” “x deaths on roads this year,” and "click it or ticket,”, displayed on major highways, on reported near-to-sign traffic accidents. To estimate the causal effect of these nudges, we build a new high-frequency panel dataset using the information on the time and location of messages, traffic incidents, overall traffic levels, and weather conditions using the data of the state of Vermont. We estimate several models that control for endogeneity of these messages, allow for spillover effects from neighboring messages, and look at the impact as the function of distance from the sign. We find that behavioral nudges, such as “drive sober” and “wear seat belt”, are at best ineffective in reducing the number of crashes while informational nudges, such as “slippery road” and “work zone”, actually lead to causal reduction in number of crashes. Our findings are robust to many different specifications and assumptions.

Suggested Citation

  • Asad, Sher Afghan, 2020. "Three essays in behavioral economics," ISU General Staff Papers 202001010800009095, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:202001010800009095
    as

    Download full text from publisher

    File URL: https://dr.lib.iastate.edu/server/api/core/bitstreams/a67c8862-e6c1-43fd-a134-ae93b9511616/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wooldridge, Jeffrey M., 1997. "Multiplicative Panel Data Models Without the Strict Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 13(5), pages 667-678, October.
    2. Windmeijer, Frank, 2000. "Moment conditions for fixed effects count data models with endogenous regressors," Economics Letters, Elsevier, vol. 68(1), pages 21-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert M. Salomon & J. Myles Shaver, 2005. "Learning by Exporting: New Insights from Examining Firm Innovation," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 14(2), pages 431-460, June.
    2. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    3. Yoshitsugu Kitazawa, 2012. "An improved theoretical ground for the linear feedback model and a new indicator," Discussion Papers 58, Kyushu Sangyo University, Faculty of Economics.
    4. Duncan, Kevin Davey, 2020. "Three papers in regional dynamics and panel econometrics," ISU General Staff Papers 202001010800009129, Iowa State University, Department of Economics.
    5. Ramalho Esmeralda A. & Ramalho Joaquim J.S. & Coelho Luís M.S., 2018. "Exponential Regression of Fractional-Response Fixed-Effects Models with an Application to Firm Capital Structure," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-18, January.
    6. Miao, Qing & Popp, David, 2014. "Necessity as the mother of invention: Innovative responses to natural disasters," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 280-295.
    7. Frank Windmeijer, 2006. "GMM for panel count data models," CeMMAP working papers CWP21/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Almodóvar, Paloma & Nguyen, Quyen T.K. & Verbeke, Alain, 2021. "An integrative approach to international inbound sources of firm-level innovation," Journal of World Business, Elsevier, vol. 56(3).
    9. Jochmans, Koen, 2022. "Bias in instrumental-variable estimators of fixed-effect models for count data," Economics Letters, Elsevier, vol. 212(C).
    10. Wen Wen & Marco Ceccagnoli & Chris Forman, 2012. "Patent Pools, Thickets, and Open Source Software Entry by Start-Up Firms," NBER Chapters, in: Standards, Patents and Innovations, National Bureau of Economic Research, Inc.
    11. Peter H. Egger & Christoph Jessberger & Mario Larch, 2013. "Impacts of Trade and the Environment on Clustered Multilateral Environmental Agreements," The World Economy, Wiley Blackwell, vol. 36(3), pages 331-348, March.
    12. Peter Egger & Christoph Jeßberger & Mario Larch, 2011. "Trade and investment liberalization as determinants of multilateral environmental agreement membership," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 18(6), pages 605-633, December.
    13. Wen Wen & Marco Ceccagnoli & Chris Forman, 2013. "Patent Commons, Thickets, and Open Source Software Entry by Start-Up Firms," NBER Working Papers 19394, National Bureau of Economic Research, Inc.
    14. Yoshitsugu Kitazawa, 2010. "Size of economic activity and occurrence of fatal traffic accidents: a count panel data analysis on Fukuoka prefecture in Japan," Discussion Papers 41, Kyushu Sangyo University, Faculty of Economics.
    15. Sheng-Pin Hsueh & Wei-Ming Lee, 2012. "A revisit to the relationship between patents and R&D using empirical likelihood estimation," Economics Bulletin, AccessEcon, vol. 32(2), pages 1208-1214.
    16. Stephanie Glaser & Robert C. Jung & Karsten Schweikert, 2022. "Spatial panel count data: modeling and forecasting of urban crimes," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-29, December.
    17. Gagliardini, Patrick & Gouriéroux, Christian, 2019. "Identification by Laplace transforms in nonlinear time series and panel models with unobserved stochastic dynamic effects," Journal of Econometrics, Elsevier, vol. 208(2), pages 613-637.
    18. Kitazawa, Yoshitsugu, 2001. "Exponential regression of dynamic panel data models," Economics Letters, Elsevier, vol. 73(1), pages 7-13, October.
    19. Semken, Christoph & Hay, Colin, 2021. "Gauging the gravity of the situation: The use and abuse of expertise in estimating the economic costs of Brexit," MaxPo Discussion Paper Series 21/3, Max Planck Sciences Po Center on Coping with Instability in Market Societies (MaxPo).
    20. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:202001010800009095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.