IDEAS home Printed from https://ideas.repec.org/p/ipt/laedte/202407.html
   My bibliography  Save this paper

A Critical Review of the Digital and Green Twin Transitions. Implications, synergies and trade-offs

Author

Listed:
  • MUÑOZ DE BUSTILLO LLORENTE Rafael

Abstract

The working paper explores the complex relationship between the digital and green transitions and analyses how these two transformations, although independent, influence each other. It discusses the potential positive effects of digitalisation in the fight against climate change, such as improved efficiency and coordination of production and the dematerialisation of goods and services. However, the paper also highlights the risk of significant backlash due to the existence of rebound effects, as well as the potential negative consequences of digitalisation for the environment, including the high energy consumption associated with digital technologies, the generation of e-waste, and the environmental impact of cryptocurrencies and artificial intelligence. Finally, the paper analyses the current state of adoption of the two transitions in companies, showing that although digitisation is more common, a significant percentage of companies are implementing both transitions, especially among large companies.

Suggested Citation

  • MUÑOZ DE BUSTILLO LLORENTE Rafael, 2024. "A Critical Review of the Digital and Green Twin Transitions. Implications, synergies and trade-offs," JRC Working Papers on Labour, Education and Technology 2024-07, Joint Research Centre.
  • Handle: RePEc:ipt:laedte:202407
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC140036
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    2. Greenwald, Judith M. & Kornhauser, Alain, 2019. "It’s up to us: Policies to improve climate outcomes from automated vehicles," Energy Policy, Elsevier, vol. 127(C), pages 445-451.
    3. Fouquet, Roger & Hippe, Ralph, 2022. "Twin transitions of decarbonisation and digitalisation: a historical perspective on energy and information in European economies," LSE Research Online Documents on Economics 115544, London School of Economics and Political Science, LSE Library.
    4. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    5. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    6. William Larson & Weihua Zhao, 2017. "Telework: Urban Form, Energy Consumption, And Greenhouse Gas Implications," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 714-735, April.
    7. Anders Bjørn & Shannon M. Lloyd & Matthew Brander & H. Damon Matthews, 2022. "Renewable energy certificates threaten the integrity of corporate science-based targets," Nature Climate Change, Nature, vol. 12(6), pages 539-546, June.
    8. François-Xavier Devetter & Sandrine Rousseau, 2011. "Working Hours and Sustainable Development," Review of Social Economy, Taylor & Francis Journals, vol. 69(3), pages 333-355, September.
    9. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    10. Jiyong Park & Kunsoo Han & Byungtae Lee, 2023. "Green Cloud? An Empirical Analysis of Cloud Computing and Energy Efficiency," Management Science, INFORMS, vol. 69(3), pages 1639-1664, March.
    11. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    12. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    2. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    4. Polimeni, John M & Iorgulescu Polimeni, Raluca, 2007. "Energy Consumption in Transitional Economies: Jevons' Paradox for Romania, Bulgaria, Hungary, and Poland (Part I)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 63-80, September.
    5. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    6. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    7. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    8. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    9. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    10. Peng, Hua-Rong & Zhang, Yue-Jun & Liu, Jing-Yue, 2023. "The energy rebound effect of digital development: Evidence from 285 cities in China," Energy, Elsevier, vol. 270(C).
    11. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.
    12. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    13. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    14. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    15. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    16. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    17. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Boudet, Hilary S. & Flora, June A. & Armel, K. Carrie, 2016. "Clustering household energy-saving behaviours by behavioural attribute," Energy Policy, Elsevier, vol. 92(C), pages 444-454.
    19. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    20. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:laedte:202407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.