IDEAS home Printed from https://ideas.repec.org/p/ipt/iptwpa/jrc132723.html
   My bibliography  Save this paper

AI Watch: Adoption of Autonomous Machines

Author

Listed:

Abstract

This report provides an empirical analysis of the drivers of and barriers to adoption of autonomous machines (AM) technologies by European companies. It also analyses the impact of adopting this technology on firm productivity. Using 2020 survey data from 9 640 firms located in EU27, Norway, Iceland and the UK, we show that AM adoption is driven by several factors and has heterogeneous effects on companies depending on their characteristics. Regarding the drivers of adoption, we find that firm size, employee knowledge of artificial intelligence (AI) and the joint adoption of AM with complementary technologies increase a firm’s probability of adopting AM. Concerning barriers to adoption, we make three main findings. First, the most relevant barriers (cost of adoption and, to a lesser extent, lack of skills and data access) are different for large firms. For the latter, liability and reputation risks, as well as data access, are the most important obstacles. Second, certain types of obstacles (namely liability and reputation risks, data access and lack of funding) are more likely to be present in certain sectors of activity. Third, the more complementary technologies a firm adopts, the lower its probability of facing obstacles to AM adoption. Finally, we find that AM adoption boosts firm productivity. This effect is higher for firms that start out with lower productivity, which suggests that there is a decreasing marginal return to AM adoption in terms of productivity.

Suggested Citation

  • CARBALLA SMICHOWSKI Bruno & DE NIGRIS Sarah & DUCH BROWN Nestor & MORENO MARÍA Adrián, 2023. "AI Watch: Adoption of Autonomous Machines," JRC Research Reports JRC132723, Joint Research Centre.
  • Handle: RePEc:ipt:iptwpa:jrc132723
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC132723
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc132723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.